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1.0

Generating LOTOS specifications from informal timethread maps is an interesting chal-
lenge. This projects aims at automating part of the interpretation method introduced in
the author’s master thesis. We define a textual languadbL) to represent timethread
maps, and a compiler that translat®$DL descriptions into LOTOS specifications. The
reader of the current report is assumed to have a background on timethreads and
LOTOS.

Introduction

1.1

111

Tools and the Design Method

The timethread-centered approach [BuC 93] [BuC 94a] helps designers to discover sys-
tems functionalities. When a timethread map satisfies the requirements from an infor-
mal perspective, we use an interpretation method to generate a description in a given
formal method. This formal specification is then used to validate the system designed
against requirements, scenarios, use cases or previous design (after some refinements).
However, for such method to be useful to designers, different tools must be available.

Timethread Maps

Timethread maps contain possibly more than one timethreads that may interact. They
represent causality flows within a system in a visual way. Timethread maps are still
informal, and composition rules only start to emerge [Loc 94]. A graphical user inter-
face GUI), or a timethread maps construction tool, needs to be created since none has
been programed yet. Such tool would prove very helpful to designers when creating and
manipulating timethread maps.
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1.13

1.2

Interpretation Methods

We can interpret timethread maps in many ways. Two partial interpretation methods
have already been defined: one gives a Petri nets semantics to timethreads, and the other
uses the Formal Description Technique LOTOS as its underlying model. Other interpre-
tation techniques could be invented in order to validate different aspects of a timethread
map against the requirements of previous maps. Again, a lack of tools prevents the auto-
mated generation of formal descriptions from timethread maps.

Formal Methods

During the last decade, many different formal methods have emerged, and different val-
idation tools were created accordingly. For instance, LOTOS is an algebraic language
that includes powerful constructs allowing the definition of a system as a collection of
interacting processes. Validation tools for executing, testing and verifying LOTOS spec-
ifications are already available from several research groups around the world.

Problem Definition

A severe lack of tools for the creation of timethread maps and the generation of formal
specifications (vianterpretation methodfBor 93]) causes the timethread design meth-
odology to be less appealing to system designers. It is necessary to have at least two
types of tools to fulfill designers’ needs, as presented by the ellipses in figure 1:

* An intelligent GUI, allowing the creation, transformations and manipulations of
timethread maps. This tool would be based on a flexible and manageable internal
representation. Such a representation, based on hypergraphs, is proposed in
[Loc 94].

* Some translator, which translates the internal representation into a specification in a
given formal language. This tool in fact an automated interpretation method.

FIGURE 1.

High-level view of a translation from a timethread map to a LOTOS specification.
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2 of 53

LOTOS Generation from Timethread Maps: A Language and a Tool



Proposed Approach

2.0

The GUI is a very complex topic by itself, and it will not be discussed here. This report
deals with the second type of tool only. More precisely, we will define a textual interme-
diate representation (callélMDL) and an automated LOTOS interpretation method.
The creation of a prototype compiler, which generates LOTOS specifications from
TMDL descriptions, will help us formalize timethreads and the LOTOS interpretation
method. We will test this compiler and give some examples, followed by possible
enhancements and a conclusion.

Proposed Approach

2.1

A More Concrete View

We can expand the “Internal Representation” box and “Translator” ellipse from figure 1
to get a more concrete view of the translation procedure proposed (fig. 1). In [Loc 94],
the author suggested that the internal representation be compaesseabinformation
(location, shapes, colors, size...) and a graph representation bdsgrbmraphs

FIGURE 2.

More concrete view of a translation from a timethread map to a LOTOS specification.
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2.2
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222
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Hypergraphs allow the creation, management, and transformations of timethreads.
Could we generate LOTOS specifications from hypergraphs? No doubt that the infor-
mation needed is there, but we believe it is too high a step to go directly from hyper-
graphs to LOTOS. We want hypergraphs to remain as close to timethread maps as
possible, without too much influence coming from the problems caused by the genera-
tion of a specification in some formal language. Also, because this hypergraph represen-
tation is still evolving, any change might result in very difficult problems for a highly-
coupled translator.

We therefore propose an interface between hypergraphs and LOTOS. It would have to
be generated from hypergraphs, but in a format suitable for an eventual LOTOS code
generation. This interface is tfiBmethread Maps Descriptiohanguage(TMDL).

TMDL has to be close to both timethreads (and hypergraphs) and LOTOS.

Such an interface has the advantage of separating concerns w.r.t. timethreads internal
representation and LOTOS code generation. Changes in the hypergraph representation
will not affect the way LOTOS specifications are generated, and vice-versa.

As shown in figure 1, we would of course need a tool (calgo? TMDL) to generate

TMDL descriptions from hypergraphs (and this must be easier than generating LOTOS
directly). However, this tool will not be discussed here because the hypergraph represen-
tation is still ongoing work. We will discuss instead the shaded language and the shaded
tool from the figureTMDL and aTMDL-to-LOTOS compiler

The Language

We present here several requirements for this textual intermediate representation of
timethread maps. The language we obtain is an extens®hif presented in the the-
sis [Amy 94], that will includd.ARGdescriptions.

STDL

This Single Timethread Description Languagas created to represent individual time-
threads as entities in their own right. Because it is defined as an EBNF gr&iiDar,
implicitly includes several creation rules, indicating what is a valid timethread.

LARGs

TheseLOTOS Architectural Representation GrafgBor 93], now calledSR-Graphs

are used in the thesis in order to represent interactions between timethreads. Although
formally defined as tuples in Bordeleau’s thesis| . ARG language or tool is available

yet.

TMDL

This new language’s intent is to include b&MDL andLARGsin one unique model.
The Timethread Map Description Language to be defined as a BNF grammar to
which a set of external semantic rules will be attached. Issues reldidtDioare:

e Creation of a new grammar.

* Definition of constructors representing interactions (timethreads and events), and
recursive groupings.

¢ Specification of rules indicating valid and invalid interactions.
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23.1
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* Inclusion of internal (hidden) and external events, therefore defining the system
interface.

* Integration (and perhaps modification)®fDLin TMDL.
* Keeping in mind the extensibility of the language.
e Taking in account the generality of the language (independent from LOTOS).

The Compiler

The automated tool would have two functionalities. The first one is a transformation
based on the analysis and grouping phases dfAR& (LOTOS Architectural Expres-
sion Generatiopmethod defined in Bordeleau’s thesis. The second functionality con-
sists in compiling the transform@MDL description into a LOTOS specification.

LAEG Method

Some algorithms developed in thAEG method can help generating a LOTOS specifi-
cation. Since LOTOS possesses binary operators only, we cannot map any graph of
interacting components onto LOTOS. Therefore, a reorganization of the interactions
between timethreads is often necessary.

We do not have to use the whal@EG method. It is too general for timethread-specific
needs:

* The analysis phase could be reduced and adapted to suit timethread-specific prob-
lems.

* The general grouping algorithm could be reduced to a deterministic linear or binary
grouping algorithm, which is sufficient for LOTOS validation purposes.

These analysis and grouping phases should be automated. ThéNtiplidescription
could be transformed into @MDL description with binary grouping. However, the
LAEG method will not be implemented in the current compiler and this will still be
work to be done.

Analysis and Code Generation

Once the binary groupetiMDL description is available, it has to be compiled into a
complete and functional LOTOS specification. Many issues can be raised:

¢ Lexical, syntactical and semantic analysis.

¢ Generation of the structure from the interaction part offfd®L description. This
was already introduced in thé\EG method.

* Generation of LOTOS processes corresponding to single timethreads. The thesis
already attacked that problem.

* Management of gate parameters.

* Management of Abstract Data Types (fag9: type definition, message passing,
tags availability, consistency...

* Management of unique names for additional internal synchronization gates.
* Management of additional sub-processes created for loops or special waiting-places.

LOTOS Generation from Timethread Maps: A Language and a Tool 5 of 53
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2.4 Objectives
Many implementation choices and design decisions, perhaps not always optimal, will
have to be taken. The resulting tool igratotypeand might not implement all desirable
functionalities. However, the compiler prototype will allow:
* A first taste of automated translation of timethread maps into LOTOS.
* To raise new issues related to the formalization of timethreads.
e To improve the interpretation method andDL.
¢ To build case studies more easily.
* To show the potential of this design method.

3.0 From STDL to TMDL

3.1 Need for TMDL
STDLis a language built to describe single timethreads. Its possesses constructs to rep-
resents activities, timethread constructs (AND-Joins, OR-Forks...), special waiting-
places, internal/external activities, tags, etc. HoweSa@)L cannot represent entire
timethread maps because it lacks constructs to represent interactions between timeth-
reads.
TMDL intends to augmer8TDLwith a set of new constructs allowing the representa-
tions of whole maps. These simple constructs will allow the generatiobARG from
which LOTOS structures can be derived. Also, since we do not plan to implement the
LAEG method directly in our compilel,MDL will allow groupings (see [Bor 93]) as
input. In this way, an additionalAEG module could be added later on to produce a
groupedTMDL structure from an ungrouped one.

3.2 TMDL Sections

A TMDL description is to be structured in different sections: internal (optional), interac-
tions (mandatory), and descriptions (mandatory). Reserved wordslaoielin

Map Map_Id Is
Internal

... { List of internal activities }
Interactions

... { List of timethreads/groups interactions }
Descriptions

... {List of STDL single timethread descriptions }
EndMap

In the optionalnternal ~ section, we can place the list of activities internal to the sys-
tem. They will therefore be unobservable from a user’s viewpoint. These activities will
become the list of hidden gates in the gldbERG

Example: Internal  Eventl, Event2, Event3
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3.3

The mandatory sectionteractions is where we use the nélWDL interaction con-
structs. An interaction is described as a set of timethreads/groupings interacting on a set
of events. We can have a list of interactions in this section. Finally, groupings are
defined recursively as list of interactions.

Example: Interactions
TT1, &Grl, TT2 on Eventl, Event2;
TT3,TT4 on Nothing
Where
Group &Grl Is
TT5, TT6 on Event3;
EndGroup

The Descriptions  section simply includes the list of single timethreads described in
STDL This section is also mandatory.

Example: Descriptions
Timethread TT1l Is
... { STDL description }
EndTT
Timethread TT2 Is
... { STDL description }
EndTT

Modifications to STDL
The original STDL [Amy 94] is slightly modified in this report.

* A new rule that describe the timethread level of specification is added. Three differ-
ent options are available: single instance - no recursion (default), single instance -
end recursion, and parallel recursion (multiple simultaneous instances). The rule is
defined aszR_level> : NoRec” |“ EndRec”|“ ParaRec”| ;

e A timethread can now be aborted by more than one abort event (rule
<R_LIST aborted> ).

* Waiting places options now also includgnal andMemory waiting places (rule
<R_wpoptions> ).

* Rules for compulsory and optional loop segments now merged into a unique rule
(<R_loopcompandopt> ).

* The<R_Constrained>  waiting place option, although still accepted by the language,
will not be given any special semantics. The use of level opti@red andendRec)
will be promoted instead.
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3.4 TMDL Grammar
3.4.1 From EBNF to BNF
In the thesis [Amy 94], th8 TDLgrammar was defined using an Extended Backus-Naur
Form (EBNF), where lists{.(} ) and options[(.] ) are permitted. However, since
the compiler-builder todbisonneeds a regular BNF context-free grammar as input file,
we have to expand lists and options. Table 1 presents the general guidelines used to get
BNF rules from EBNF rules.
TABLE 1. From EBNF rules to equivalent BNF rules.
EBNF Rule. Equivalent BNF Rules
List: <R1>:<R2> <List_R3> <R4>;
<R1>: <R2> {<R3>} <R4>; <List R3>:<List R3><R3>;
<List R3>:;
Non-emtpy list: <R1>:<R2> <List R3><R4>;
<R1>:<R2> {<R3>}* <R4>; <List R3>:<List R3><R3>;
<List_R3>:<R3>;
Option: <R1>:<R2> <Opt_R3><R4>;
<R1>:<R2>[<R3>] <R4>; <Opt_R3>: <R3>;
<Opt_R3>:;
Choice between parenthesis: <R1>=<R2> <Rest_R1>;
<R1>:<R2> (<R3> | <R4>); <Rest_RP: <R3>;
<Rest_RP : <R4>;
As suggested ihisondocumentation, left-recursion is used to expand lists. Also, bison
allows rules that have the same left-hand-side to be regrouped using the sepéarator “
For instance, the two rulegest_R1> in the previous table could be rewritten as the fol-
lowing single rule (for clarity)sRest_R1>: <R3> | <R4>;
3.4.2 Resulting TMDL Grammar
The resultingTMDL BNF grammar is given in appendix A. It includes all the STDL
(equivalent) rules, plus additional ones corresponding to the map definition, the internal
section, and the interactions section.
Note that rules start witR_ and they are in rectangles while reserved words are in
ellipses. Rounded box represent lexical tokens returned from the scanner. Two types are
used here, and we can define them as regular expressions:
IDENTIFIER = [a..Z]([a..Z][0..9])*
NUMALPHA = [0..9]([a..z][0..9])*
8 of 53 LOTOS Generation from Timethread Maps: A Language and a Tool
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4.0

Building a Compiler

4.1

4.2

421

Terminology

In the compilers-world, many words and expressions have their specific terminology
[FLB 88]. We recall the most important ones here:

* Tokens They are the lowest level symbols used to define a programming language
syntax (reserved words, integers, arithmetic symbols, punctuation...)

* Lexical analyzeror Scanner A function that reads an input stream, character by
character, and returns tokens one by one. It also usually eliminates comments.

e Parser A function that recognizes valid sentences of a language by analyzing the
syntax structure of a set of tokens returned from a lexical analyzer. It verifies correct
syntax w.r.t. the rules expressed in the context-free grammar.

* Symbol tableA data structure where symbol names and associated data are stored
during parsing to allow for recognition and use of existing information in repeated
uses of a symbol.

e Semantic routinesThey check the static semantics of each construct and then, if no
problem is detected, they generate the (internal) code that correctly implements the
construct (they give its meaning to a construct).

e Static semant& Set of restrictions that determine which syntactically legal pro-
grams are actually considered valid (identifiers declared, operators are type-compat-
ible, right number of parameters...). We usually cannot express them in a context-
free grammar.

Compiler Tools

Being a prototype, we want our TMDL-to-LOTOS compiler to be as easy to develop as
possible. This is why we use compiler-generator tools sutdx ésr flexX) andyacc(or

bison). These tools run under UNIX and generate portable (and quite efficient) C code.
The current compiler was developed on a PC-486 uniderx 1.0 [Wel 93], and then
ported to Sun workstations und@unOS In both cases, the GNU C compilgac was

used. Portability td1S-DOSwith Turbo C is also possible.

Flex

flex is a tool for generating scanners (or lexical analyzers). It is an enhanced GNU ver-
sion of the well-known UNIX toolex [LeS 75]. The description is in the form of pairs

of regular expressions and C code, called rdlesgenerates as output a C source file,
lex.yy.¢ which defines the scanning routiyex()

We preferredflex (version 2.3) tdex because of a useful feature of the former that
allows the generation of a case-insensitive scanner. The case of letters givdtein the
input patterns is ignored, and tokens in the input are matched regardless of case. The
matched text given igytext(returned for identifiers) however has the preserved case.
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4.2.2 Bison
bisonis a general-purpose parser generator from GNU which is upwardly compatible
with input files designed fayacc[Joh 75], the standard parser generator under UNIX.
bison converts a grammar description for an LALR(1) context-free grammar into a C
program to parse that grammar. C code can also be inserted for semantic routines and
code generation. The version 1.18 was used in our case.

Several bison operators are often used in grammar descriptions:

* 9%token Declares a terminal symbol (or token).
* Y%start Specifies the grammar’s start symbol.
* YYSTYPEMacro for the data type of semantic values; set to ‘int’ (integers) by

default.
e ‘:’: Separates a rule’s result from its components.
e ‘' Terminates a rule.
* ‘| : Separates alternate rules for the same result nonterminal.

* yyparse() The parser function produced by Bison; call this function to start parsing.
* yyerror(): User-supplied function to be called yyparse(Jon error.

4.2.3 Files Structure
Many different files written in different languages are involved in the making of a com-
piler. We can see, in figure 3, all the files (rectangles) and tools (ellipses) needed in our
case.

FIGURE 3. Files and tools involved in the making of the TMDL-to-LOTOS compiler.

tmdl.bison simple.skel tmdl.lex flex.skeldan

NS S
Cbison)

'

tmdl.parser.c tmdl.h lex.yy.c

tmdl.c
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5.0

bisonneeds the grammar fitendl.bisonand a skeleton filesimple.skelprovided with
the tool) to generate the parser functygparse()in tmdl.parser.c

To generate the scanngfiex()in lex.yy.¢ flex uses a scanner descriptiamdl.leXy and
another skeleton fileskeldan.flexfor general routines. This time, however, we slightly
modified the given skeleton file for portability ¥S-DOS

Data structures, type definitions and constants are regrouedllitn tmdl.c contains

the main function and most of semantic routines. It is used as inget to get the final
tmdl compiler.

TMDL-to-LOTOS Compiler

5.1

Functionalities

The TMDL-to-LOTOS compiler, referred asdl from now on, takes as input a timeth-
read map described TWMDL (figure 4). It outputs three different files:

* A LOTOS specification corresponding to the timethread map. It is generated using
the interpretation method explained in [Amy 94].

* An error file including all error and warning messages generated during the compila-
tion processtmdl also gives a summary of the number of errors/warnings.

* The different symbol tables used during the compilation. First, the map structure is
shown (interaction tree) followed by global symbol tables (timethreads, groups, tag
values, internal/external activities). Then, for each timethread in thetmdbppre-
sents the local symbol tables for internal activities, external activities, and tag identi-
fiers. Note that some table elements possess flags that are also displayed (defined,
undefined, used, unused, activity type, number of value parameters...). This file is
used for debugging purpose only.

FIGURE 4.

TMDL compiler functionalities (input and output files).

map.lotos
map.tmdl 4>—> map.errors
map.tables
The user callgmd! in the following UNIX-oriented way:
tmdl { <Options> }
where the possible list @bptions> may include:
* [-iinput_file] :TMDL description file (default is standard input).
* [-0 output_file] :LOTOS specification file (default is standard output).

LOTOS Generation from Timethread Maps: A Language and a Tool 11 of 53



TMDL-to-LOTOS Compiler

52

* [-toutput_file] :Symbol tables file (no file by default).

* [-e output_file] :Error and warning file (default is standard error).

* [-b buffer_size] :Size of internal buffers, in bytes (default is 8192).

° [] :Flag for forced output, if an error is encountered (by default, no

LOTOS file is output when an error occurs).

The validity of each file is verified, and an error message is emitted when an unknown
option is encountered.

Prototyping

In prototyping a compiler, many important design decisions have to be made. This sec-
tion enumerates some of the most import ones.

* Use of compiler generators
In order to buildtmdl, we chose to make use of usual UNIX compiler generéitots

andbison They are simple to use, portable, and generate quite efficient code for simple
compilers like ours. This choice almost dictates C as the implementation language since
the two functionsyylex()andyyparse() generated from these tools are C functions.

e Strong coupling
In a normal compiler, it is useful to have separate modules for parsing, static semantic

analysis, and code generation (refer to figure 14 for an example). To get this modularity
(or loose coupling), the problem to solve must be very well understood. However,
because we were uncertain of what type of problems could arise with our compiler pro-
totype, it seemed simpler to check the static semantic and to generate code directly
while parsing (by inserting C code in the grammatnd|.bisor). This strong-coupling
solution is common for very simple compilers, but we will see later that we reached the
limitations of this approach famdl.

* Semantic value and buffers

bisoris default semantic value for grammar rule is set to integer, so each recognized rule
returns an integer to the calling one. The problem here is that, due to our strong coupling
approach, we generate LOTOS code while parsing the input description. The only way
to do so is by generating code by parts from the bottom rules to the top rule and there-
fore a rule must be able to return code to its calling rule. We hence decided to set the
semantic value to a pointer to a striaga(* ). To generate the code, we ¢pentf  to

print in internal buffers. Three large buffers (their size can be set withritile -b

option), and other small ones (of 1024 bytes) are defined for flexibility. When a code
part is complete, the used buffer is duplicated in memoryawitlp  (for the buffer to

be reused) and returned to the calling rule which can use it as a parameter to generate its
own code part.

Knowing these decisions, we can understand now how each grammar rule is recognized
and executed withibison The following steps (figure 5) give a general idea of how we
try to insert and to structure C code in each grammar rule:
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FIGURE 5.

5.3

Overview of the steps involved in the recognition and execution of a grammar rule.
1. Set flags (if necessary)
2. Save context on stacks (identifiers, parenthesis, levels...)
3. Set tabulators (if necessary)
4. For each sub-rule/token on the right-hand-side
4.1  Match the sub-rule/token (using bison’s engine)
4.2 Get the corresponding code part (associated to parameters such as $1)
Retrieve context
Analyze static semantics
Generate code in buffer (using parameters $1, $2...)
Reset tabulators
Duplicate buffer
10. Return the duplicated code to the calling rule ($$ = ...).

© ® N o u

Note that flags, stacks, and tabulators are discussed later on in section 5.

Restrictions on TMDL

Due to the complexity coming from the previous decision (strong coupling), some
restrictions are made on particular constructs:

* Restriction on loops
Timethread loops are not allowed to include constructs interpreted as a parallel segment

in LOTOS (with operator)| or |[...]| ). Such constructs arear, Choice , OrFork ,

AndFork , Async , Loss , and special waiting placeBe{ayed , Time, Signal ). This restric-

tion comes from the decision of implementing the loop in a way different (but simpler)
than the one in the thesis. The current loop needs the useegf theOTOS construct,

which creates many problems when combined to concurrency problems (all exits have
to synchronize, and this cannot happen).

* Restriction on interactions

The LAEG method is not part of the current compiler, so the timethread interaction
structure needs to be grouped|inearized in theTMDL input description. This means

that there must be only one interaction listed at each level (one at the top level, and one
per grouping sub-definitions), as in a tree structure. Naturally, an interaction might have
more than one member (timethreads or groups) and more than one synchronizing event.

* Restriction on tags
Our compiler allows the definitions of tags. The management of tags over synchronizing

processes is however a complex task, mainly because of LOTOS semantics and scoping
rules. Synchronizing processes or behaviours need for each synchronizing event to have
the same number, order, and sort of value parameters (luckily, we only use one sort
namedTag). This consistency has to be dealt with when we generate the specification.
Right now, this task is not completed. The main restrictions are therefore to define every
tag before using them (with thrag construct), and not to define new tags in loops and
special waiting places (with ttreconstruct).
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5.4.2

* Restriction on special waiting places

Beside avoiding to use them in loops and not defining new tags within them, there is a
last restriction applied to special waiting places. Memory waiting places are not yet
available, but they are replaced with normal waiting places instead.

Data Structures and Related Functions

Constants

Many constants are defined imdl.hto generalize the data types and data structures
definitions. They also enhance the understanding, management and consistency of these
types and structures. Such constants are defined for:

* Symbol types in symbol tables (TYPETT, TYPEGROUP, TYPETAGVAL...)

* Symbol attributes in symbol tables (DEFINED, USED, ACTABORT, ACTSYNC..)

¢ Timethread levels of specification (NOREC, ENDREC, PARAREC)

e Types of waiting places (WPNORMAL, WPDELAYED, WPTIME...)

* Values returned by symbol tables management functions (INSERTED, SET, ...)

* Number of spaces per tab for tabulation (TABSPACE, MORETABS, LESSTABS)

Several constants also constrain to a certain extent what is accefteiDasnput
code:

¢ Maximum depth for paths within paths and other stacks (MAXDEPTH is set to 64)
¢ Maximum number of members in an interaction (MAXMEMBER is set to 32)

¢ Maximum number of characters in an identifier IDMAX is set to 32)

Identifiers

Identifiers are string of IDMAX characters. We also define a structure named id which
is composed of:

® char Orig[IDMAX+1] : Original symbol identifier.

* char Low[IDMAX+1] : Symbol identifier, in lowercase.

orig is used for code generation whilew is used for comparisons when a symbol is
inserted or retrieve in a symbol table, to speed-up the searching process (the compiler is
case insensitive, but output the original symbol uppercase/lowercase).

Note that the+1’ in the array relates to strings representation in C; an additional NULL
character is needed to end a string.

Two functions intmdl.crelate to identifiers:

* void lower (Dest, Source) : Puts inDbest the lowercase string corresponding to
Source .
® char * trunc(IdToCheck) : Truncates identifiers longer than IDMAX characters.
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Symbol Tables
The symbol tables used in our compiler are ordered chained lists with a structure
(namedsymtab ) found intmdl.h

e idid :Symbolidentifier.

* int Defined, Used : Symbol attributes.
* intLine :Line number of first occurence (for error/warning messages).
* struct symtab *Next : Link field (pointer to next list element).

Global symbol tables are used for timethreadsadb), groups GroupTab ), tag identifi-
ers (fagldTab ), tag valuesTagvalTab ), and activitiesActTab ).

An extensive set of functions managing these tables are defitradlia

® int putsym (SymTable, Symid) : Adds an element to a symbol table (ordered list).

* symtab *getsym (SymTable, Symid) : Returns a pointer to an element in a symbol
table.

* int setsym (SymTable, Symlid, SetDefined, SetUsed) . Sets an element’s
attributes in a symbol table.

* void clearsym (SymTable) : Clears a symbol table.

* void printsym (SymTable, TableType) : Formats and prints a symbol table (to the
table file).

*  void printallsym () : Formats and prints all symbol tables (to the table file). Uses
printsym

Symbol tables for external activities, internal activities, and tag identifiers are also
defined for each timethread in th&DL description. We use them for static semantic
analysis and for the generation of the symbol table file. They are grouped in a list struc-
ture, namedbcaltt , in the following way:

e char*LowTTld : Timethread identifier (lowercase only).

e symtab*Ext : Timethread local external activities.

e symtab*Int : Timethread local internal activities.

* symtab*Tag : Timethread local tag identifiers.

*  struct localtt *Next : Pointer to next timethread in chained list.

Map Structure

Since we require timethread interactions to be linearized, a simple tree structure is suffi-
cient to represent them (the tree width is MAXMEMBER at most). Thusydbruct

structure is defined as:

e idid :Timethread or group identifier.

* intType : Node type (TYPETT or TYPEGROUP).

* symtab *Interactions : List of synchronization events (NULL wheiathing ).

* int NumMembers : Number of members in group (0 when it is a timethread).

® struct mapstruct *Member[MAXMEMBER] : Group members list (hode children).
Each node is limited to MAXMEMBER members (and children).
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545

55

551

Three functions, found itmdl.c manage the map structure:

® int putmem (MapStruct, Symld, SymType) : Places a new member (timethread or
group) in the map tree structure.

* mapstruct *getmem (MapStruct, Symld) : Returns a pointer to a member in the
map structure.

® void printmem (MapStruct, ParTab) : Formats and prints a map tree structure (in

the table file).

Stacks
Some grammar rules require context saving. Different stacks were used to do so:

* intLevels]MAXDEPTH] : To manage Results from rules R_firstpath and R_orfork.

* int ParCountfMAXDEPTH] : To save the number of open parenthesis (in tag defini-
tions, guards, forks...).

* char * Uniqueld[ MAXDEPTH] : To save unique identifier temporary variables (e.g.,

for a And-Fork within a And-Fork).
® char OldTabs[4*MAXDEPTH] : To save current tabulation.

No functions were created; four global variables were incremented/decremented
instead.

Static Semantics

Static semantic routines intend to detect as many possible semantic problems as possi-
ble in the timethread map, whatever GUI tool there is on topndf or whatever
LOTOS tool used afterwards. Trying to detects problems here will either validate the
output of a GUI tool, or prevent a LOTOS tool from analysis an incorrect specification.

Note that each function related to static semantic starts wdth’ ‘and that semantic
analysis sections in the source code are identified and commented.

Generic Functions
Before getting into real semantics, we should present the two generic functions used to
output all errors and warnings.

* void semwarning (Category, Symld, Message) . Outputs a given warning mes-
sage and increments counter ‘warningnum’ for the final summary report. The format
iS: “WARNING (line %d): %s ‘%s’ %s\n”, linenum, Category, Symld, Message

* void semerror (Category, Symld, Message) . Outputs a given error message and

increments counter ‘errornum’ for the final summary report. The format is:
“ERROR (line %d): %s ‘%s’ %s\n”, linenum, Category, Symld, Message

Usually, an error leads to an invalid LOTOS specification while a warning could lead to
a valid LOTOS specification but a semantics possibly different than the one intended in
the timethread map.
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5.5.2 Parsing
If an error occurs during parsingisonmakes a call tgyerror(s)  for error handling.
This function then callsiemerror(“Symbol”, yytext, “caused a parse error.”)
whereyytext is the last symbol read. No error recovery is intended.

5.5.3 Symbols
Symbols and especially identifiers can be overloaded with many types, could be
reserved words, or could lead to static dataflow analysis problems. We use three func-
tions (found intmdl.g to detect these problems.

int semchecksym (SymType, Symid) : Checks whether or not a symbol is already
in other symbol tables. The diffent types of symbols are are treated differently.

It has been decided that an error is output when:
- A value identifier is also a timethread, tag, or activity identifier,
- Any type of identifier is the same as the map identifier.

A warning occurs when:
- An activity identifier is also a timethread or tag identifier,
- A timethread identifier is also a tag identifier.

The approach taken offers much flexibility in these aspects, and other combinations
could be considered.

char * checklotosword(IdToCheck) : Checks an identifier against the list of
LOTOS reserved wordscHar * LOTOSwords]] ). Common TMDL keywords
(Choice Is, Par, andWherg are excluded from the list because the parser already
takes care of such identifiers.

When a LOTOS identifietidlotos’ is detected, it is renamed ttD' idlotos, and a
warning message is output. No error is necessary since the renamed identifier cannot
interfere with other ones (the underscore forbiddenMiDL).

void semcheckdefuse (SymType) : Checks that defined symbols in a given table are
used, and that used symbols in a given table are defined (static dataflow analysis).
The different types (timethreads, groups, tag identifiers, and tag values) of symbols
are treated differently, and error messages output accordingly (warnings only for
tags).

5.5.4 Interactions
Timethread interactions also have to be validated. When the map structure is parsed, the
following static semantic routines are applied:

void seminteractions (MapStruct) : Checks all interactions in a map tree struc-
ture. Callssemcheckttint ~ on each nodes. Errors are output when:

- A timethread cannot be found in the description section,

- One of the synchronizing event is not found in an interacting timethread.
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555

55.6

* void semcheckttint (IntList) . Checks interactions between timethreads
involved in an interaction. It uses a collection of boolean flags to check the presence
and type of activities involved in the interaction. These flags are set by checking the
corresponding activity type stored in timethreads local symbol tables.

Warning are output when:

- The number of tag parameters are not the same for all activities (the LOTOS pro-
cesses could not synchronize),

- An abort event is detected without an aborted event,

- A waiting place interacts with a trigger,

- An action interacts with other activities,

- A trigger interacts with a trigger,

- A sync event interacts with activities different from syncs and asyncs.

- The interaction is composed of asyncs and results only.

Errors come from:
- Abort or aborted event interacting with other types of activities.

Again, the approach used is much flexible and allow different semantic rules to be easily
created.

Loops

The compulsory andoptional ~ sections of aoop must not contain any asynchronous
event (Async, AndFork, Par, ...). This leads to a problem with the LGkDSused in
our mapping:

(exit ||| stop) ~ stop

Because parallel processes would never synchronizgiton the functionality of the
Loop process, defined asit , should becomeoexit and the loop would never termi-
nate. This is detected by LOTOS tools such as TOPO and XELUDO.

To detect this particular problemtimdl, we check that we do not add a parallel opera-
tor ()| or|L.]| ) while creating the loop. If such an operator is found, then an error
message is output.

Internal Activities

Some activities are by definition external to timethreads, e.g., triggers, results, syncs,
asyncs, abort... Therefore, we cannot make then locally internal. When this happens, a
warning is emitted (saying that such activity should not be internal), and the activity is
then considered as external.
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5.6

56.1

Code generation

Explaining 3000 lines of C code is not an easy task, especially when it comes to code
generation routines. We assume here that the reader already understands the semantics
of the mapping from TMDL constructs to LOTOS constructs covered in [Amy 94]. In

this section, we will try to cover the generic routines used to solve issues (enumerated in
the thesis) related to lists of gates, ADT generation, loop extra process, complex waiting
places, interactions, unique identifiers, dangling parenthesis, levels of specification, and
tabulation (for pretty-printing).

Solving Difficult TMDL Constructs Issues

As explained in section 5.2, we decided to generate LOTOS code directly when parsing
the inputTMDL description. However, this does not forbid us to create generic and
modular functions to accomplish this task, on the contrary. Here are the most important
ones:

Lists of Gates

® char * makegates (SymTable) : Returns the list of all gates from a symbol table.
Used to generate LOTOS processes formal and actual parameters.

® char * makeinternal (SymTable) : Returns the list of internal activities from a
symbol table. Used when generating the LOT@f...inconstruct.

* void makespecgates() : Places the list of map external activities in a symbol table.
Computes this list from all the timethread external gates that are not globally inter-
nal.

ADTs

® char * maketaglist (SymTable, SendReceive) : Makes the list of tags, separated
with ? for send and ! for receive, from a symbol table. Used for triggers, results,
waiting places, etc. Internal LOTOS synchronization gates also use this function to
pass data values from one scope to another.

® char * makeadt() : Creates the ADT Tag definition at the beginning of the specifi-
cation. Thesort Tag  is created and mapped onto natural numbers (from the LOTOS
library) with an equation of the format: Tag -> Nat . A dummy tag value is
always created firstigmmy_val ), and then all the tag values from the ordered symbol
table are mapped onto naturals. Two equations over tags are previdedequal-
ity andne for inequality.

Loop

® char * makelooppar (SymTable, Type) : Makes the loop parameters for tags from
a symbol table. When the loop is first created, formal and actual parameters for gates
and values are unknown and are therefore replaced with symbols (forbidden in
TMDL to avoid side-effects):
- ‘@’ for actual parameters,
- '+’ for formal parameters,
- '# for formal parameters between parenthesis,
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5.6.2

5.6.3

- ‘%’ for exit parameters,
- ‘N for accept.

When all the information is available, these symbols are replaced with their corre-
sponding parameter list (by using functionst ).

* void subst (Dest, Source, CharFrom, StringTo) : Generic function that
replaces a characterharFrom ) from thesource string withstringTo  and places the
result inDest .

Abort

* void makeabort(Buf) : Completes an aborted timethread LOTOS process, when
necessary, by adding the disabling evgntagortEvent; ... ) at the end of the
process.

Waiting Places

* void makewait(Buf, SymWPType, Symid, SymPar) . Creates complex waiting
places fromsymwpPType It generates new tag identifiers and valuesTfoe and
Signal waiting places, and manages the internal synchronizatwensry waiting
places are not implemented yet, but this generic process would allow to do so.

Interactions

* int makeintlist(IntList, MapStruct, Symld, IntDepth) : Creates the activity
interaction list corresponding to the map structure (or a sub map in the global tree).
Used to synchronize LOTOS processesi(|[intlist]] TT2 ).

® char * makebeh(MapStruct, ParTab) : Creates the LOTOS behaviour correspond-
ing to the map structure. Groups are replaced with simple parenthesis, and tabulation
is managed.

Unique Identifiers

Unique identifiers are necessary when creating new internal synchronization events
(SyncPar_0 , SyncChoice_2 , ...) and new sub-processesof_1, Loop_3, ...). TO ensure

each of these identifiers is unique, we use a countejuéNameGen), initialized to 0O,

and the following function:

* char*namegen (Name) : Creates a unique name identifier from parametee The
returned identifier is the concatenatiorNafne an underscore (to avoid interference
with users identifiers), and the valuewfiqueNameGen. The counter is incremented
at each call.

Dangling Parenthesis

Because we have a highly-coupled 1-pass compiler, it is not always possible, for some
constructs such asuard and Tag (mapped onto LOTOS guard asd), to know in

advance where a parenthesis should be close. The best we can do is to open the needed
parenthesis (as in ‘{Guard] -> ... restofpath "), remember that we have a dan-

gling parenthesis, and then close it later on.
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5.6.4

5.6.5

6.0

In our prototype, we use a stack of open parenthesis couintersount(] ) that is
updates each time a parenthesis is open. A stack is needed for paths within paths. When
aTMDL path is finished (&esult is encountered), the following function is called:

* void closepar(Code) : Adds dangling closing parenthesis ‘)’ at the end of a path or
sub-path. Manages tabulation and adjust the stack accordingly.

Levels

TMDL allows the use of three important levels of specification, for each timethread indi-
vidually:

* Single instance, no recursiomoRec),

* Single instance, tail recursioBn@Rec),

* Multiple instances at once (parallel recurshararec ).

This influences how the LOTOS process ends. When the timethreadtis is encoun-
tered, the code generated between the result and the last parenthesis is:

* \WhenNoRec : stop

¢ \WhenEndRec : Timethreadld [>]

e WhenParaRec : stop ||| TimethreadId [>]

where 5’ is replaced with the process list of parameters at a later stage.

Tabulation

For a LOTOS specification to be readable, it must be indented in some way that reflects
the structure. Tabulators are used in our case, in every code generation rule, for pretty-
printing:

* TABSPACE (Constant) Number of space characters in a tab, foutmaldinh

* ATab: Tab withTABSPACESpaces.

* Tabs: (string) Tabulation of the current line.

* void adjusttab(Command) : Adjusts the number of leading tabs for indentation.
If Commandis MORETABSadds a tab tDabs .
If Commandis LESSTABS removes a tab fromabs.

e OldTabs[] : Stack of tabulator strings (to keep context).
* TabDepth : Pointer to the current old tab stringdriTabs stack

Because we manage tabs during parsing, many adjustments that might look spaghetti-

like are needed. Also, loops tabulations are incorrect due to our now famous strong-cou-
pling approach.

Testing and Example

One of the major problems with testing a program such as a compiler is that we would
have to be exhaustive in order to cover its functionalities adequately. In this section, we
present how were tested the grammar rules and semantic routines, and we give an exam-
ple of a complete compilation (tA@aveler System
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6.1

6.1.1

6.1.2

6.2

6.2.1

6.2.2

Testing Grammar Rules

The TMDL syntax was tested during the compiler implementation. The tests are not
enumerated here because they are simple, numerous and not very interesting. However,
here is a short description of what has been tested.

Scanner
The scanner (generated figx) determines tokens from the input description:

* All TMDL keywords have been tested and recognized (@wep Compulsory , Opt,
andoptional ).

¢ Identifiers and numalpha are also correctly recognized. If they have morenan
characters, then they are truncatetmx characters with a call teunc()  before
being returned to the parseheckiotosword IS also applied to rename LOTOS
identifiers when necessary.

e Comments (betweern™and 1) are correctly recognized and ignored during lexical
analysis. However, a comment must not go over more than one line, and comments
cannot include other comments.

* Tabs, newlines and spaces are correctly skipped.

* Symbol case-insensitivity tested.

e Forbidden symbols (~, @, #, $, %, ~, *, -+, , L.\ [ 1. <> ./} " ") are
detected and they cause a parse error.

Parser
The parser (generated bysor) recognizes the grammar rules, especially because the
rules are defined in BNF and then directly usetiidl.bison We tested that:

¢ Allindividual rules are correctly parsed.
e Syntax errors are detected at any point.
* TMDL reserved words cannot be interpreted as identifiers.

Testing Semantic Routines

Semantic routine are a lot more interesting to test. However, an exhaustive testing would
be very expensive in our case, even if our prototype compiler is not very large. There-
fore, we will simply present a te§tMDL description for interactions, and another
TMDL description to test the language’s complex operators.

Static Semantics

The errors and warnings presented through sections 5.5 and 5.6 were tested and gener-
ated from multiple short teFtMDL descriptions. They are too numerous to be recalled
again here. No problem with the detection methods used seemed to happen.

Interactions

Code generation for interactions is particularly new in this project. To test its correct-
ness, we can use the following timethread map (figure 6). Notewhat andevent3

(in the dotted box) are internal events.
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FIGURE 6. Timethread map TestInteractions for interaction testing

T2

TT2 TT1
Eventl R1

T4

TT4
Eventl Event3

imE

T5

TTS R3

R5

We can get a LARG corresponding to these five interacting timethreads (fig.7a), and a
linear grouped LARG (fig. 7b) after applying the LAEG method [Bor 93].

FIGURE 7. Original LARG and grouped LARG of TestInteractions
TestInteractions TestInteractions
hide Eventl, Eventan | hide Eventl, Eventdn |
TT1
Grl Gr2

T4 @ TT4 TT2 TT1

Gr3

TT5 TT3 TT5 TT3

@ (b)

The TMDL representation of these interactions would be:
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Map TestInteractions Is

{ This TMDL description comes directly from the original LARG. }
{ It cannot be used as-is by our compiler. Groupings are needed. }

Internal

Eventl, Event3 {2 internal events }
Interactions

TT1, TT2, tt4 on Event2;

TT3,TT2, tt4 on Event2;

TT4, TT5 on Eventl, Event3;

Descriptions
... { Timethread TT1 to TT5 descriptions, in any order. }

The problem here is that interactions are not linear, i.e., not directly representable in
LOTOS. Using the LAEG method, one could form the grouping in figure 7b. Our com-
piler does require this grouping since the LAEG method is not implemented yet.

A secondTMDL interactions description for this new LARG is required. The chosen
grouping is interesting because it allows us to test internal events and many interaction
parameters (number of groups and events).

Map TestlInteractions Is

{ This TMDL description tests the internal and interactions sections. }
{- Internal and external events }

{- Interactions with 1, 2, and 3 members }

{- Interactions with 0 (Nothing), 1, and 2 events }

{- Groups enumerated in wrong order }

{- Group within a group }

Internal
Eventl, Event3 {2 internal events }
Interactions
&Grl, TT2, &Gr2 on Event2; { 3 members. 1 event }
Where
Group &Gr2 is { Group Gr2 before Group Grl}
TT1, TT3 on Nothing ; {2 members, 0 event}

EndGroup {&Gr2}
Group &Grl is

TT4, &Gr3 on Eventl, Event3; {2 members, 2 events }
Where
Group &Gr3 is { Group within a group }
TT5 on Nothing ;{ 1 member, 0 event }

EndGroup {&Gr3}
EndGroup {&Grl}

Descriptions
... { Timethread TT1 to TT5 descriptions, in any order. }

Using our compiler, we obtain a LOTOS specification partially reproduced here. No
compilation errors or warnings were detected. As you can see, this specification reflects
correctly the internal events and map structure in a LOTOS form, and the gate parame-
ters are also correct. Tabulation makes this part easier to read.
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specification TestInteractions[Event2, R1, R3, R5, Tr2, Tr4, Tr5]: noexit

... { Libraries and tag ADT }
behaviour

hide Eventl, Event3 in

(

TT4[Eventl, Event2, Event3, Tr4]
|[Eventl, Event3]|

TT5[Eventl, Event3, R5, Tr5]

)
[[Event2]|
TT2[Event2, Tr2]
|[Event2]|

TT1[Event2, R1]

Il

TT3[Event2, R3]

)

where
... { Process TT1 to TT5 descriptions }
endspec (* Map TestInteractions *)

In the symbol table file generated by our compiler, the map structure is also reflected in
the following way:

MAP STRUCTURE:
Testlnteractions TYPEGROUP 3 Event2

Grl TYPEGROUP 2 Eventl, Event3
TT4 TYPETT O
Gr3 TYPEGROUP 1
TT5 TYPETT O
TT2 TYPETT O
Gr2 TYPEGROUP 2
TT1 TYPETT O
TT3 TYPETT O

6.2.3 Complex Constructs
Testing allTMDL constructs is a huge (and tedious) task. In this section, we will test
complex constructs only. Simple construetsi( , trigger , result , action , sync , seg-
stub , andwait ) will not be discussed as such, mainly because they are usually mapped
onto a simple LOTOS gate.

The approach taken here is to regroup all constructs to test into a single (and unrealistic)
TMDL map description presented in appendix B.1. In this way, we can test multiple con-
structs at once, reducing the number of timethread processes. The LOTOS specification
(file tests.lo} is in appendix B.2, and appendix B.3 is the symbol tablegé8ls.tak.

Here are the test descriptions and results. It is suggested to réddhedescription
and its corresponding LOTOS process at the same time.:

* Abort and Levels: Timethreads TestAbort, TestAbortedl, TestAborted?2.

These timethreads test aborts and levels of specifications. We see how the disable opera-
tor is used in LOTOS processes to implementtedon . The three levels of specifica-

tion (NoRec, EndRec, and ParaRec) have also been tested, and we can see the impact on
the recursion in the LOTOS processes.
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6.3

* Choice, Async, Tags, and GuardsTimethread TestChoice.

This timethread tests@noice within acChoice . It also uses thesync activity and bool-

ean operators over guards. Also, tag passing over internal synchronizations (for the two
Choice ) is tested. In the LOTOS process, the choices are correctly specified and two
unique internal synchronization evenggnc_Or_0 andsync_Or_1 ) are created. The tag

Cond used is passed over the two synchronizing events to make it accessible to the rest
of the process. Guards, boolean, and equality operators are well translated too. Finally,
the asynchronous evestt3 is mapped onto an interleaving sub-behaviour.

* Par, Async, and Tags Timethread TestPar.

This timethread tests rar within aPar. It also uses thasync, and tag passing over
internal synchronizations (for the twar) is tested. In the LOTOS process, the parallel
segments are correctly specified and two unique internal synchronization events
(Sync_And_2 andsync_And_3) are created. The tagpnd used is passed over the two
synchronizing events to make it accessible to the rest of the process. The asynchronous
eventAct3 is again mapped onto an interleaving sub-behaviour.

* Loops, Tags, and GuardsTimethread TestLoops.

A Loop within aLoop is tested in this timethread. Tags and guards are used to test tag
passing from and to loop sub-processes. We also use short and long keywosds for
pulsory andoptional segments. Within the LOTOS process, two loop sub-processes
are created.bop_4 andLoop_5). Tag and gate parameters are correctly listed and man-
aged when entering loops, and when exiting loops (with:thecept...in construct).

Of course, no activity leading to LOTOS parallel operators were used in the loops,
because this would have led to an error.

* Special waiting placesTimethread TestWP.

Here we test waiting place optionise, Delayed , andsSignal . The timed trigger causes

two new internal events to be creatednéouts andSync_Time_7 ). They are used to
decide the verdict (valueut or OK) passed to the new tagneTs. The delay of the
delayed waiting place is represented with the simple new internal amtigns .
Finally, the signal waiting place causes the creation of an internal synchronization event
(Sync_signal_9 ). Its result ¢es orNo) is passed to the new tagAct13 . Again we can

see that the previous tagnfeT8) was also correctly passed over the synchronization
event.

In this quite impressive test, we can see from the LOTOS specification seems to manage
in a working way the map structure building, the tag ADT generation, dangling paren-
thesis, unique identifiers, gates lists, parameters lists, levels of specification, and tabula-
tion (except for loops). Therefore, we can have some trust in the solutions enumerated in
section 5.6 for these complex problems.

Traveler System Example

As a more concrete example, we useTreveler Systemas defined in [Amy 94]. This
system is simple to understand and complex enough to test our compiler in a useful way.
The purpose of this example is to give a complete view of all files involved itmmthe
compilation, and to see that the LOTOS specification effectively works.
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6.3.1

The Timethread Map

The map of figure 8 comes from the thesis. It has been slightly altered to satisfy a
restriction on loops discussed in section 5.5.5. The timettdéeguhtcherincludes an
asynchronous evenb4skC) in its loop. Because our prototype compiler cannot manage
constructs in loop that lead to parallelism in LOTOS, we transform this asynchronous
interaction into a synchronous one. This of course modify the functionality of this sys-
tem (a dispatcher and a cab now have to synchronize with each other), but this is the best
we can do with the current version of the compiler.

Note that the original and grouped LARGs are not given here. Readers can find them in
[Amy 94].

FIGURE 8.

Traveler

Tnew

TgetinC TgetoutC

DlookforC

Timethread map of the new traveler system

Dispatcher Cab Plane

Dready

TgetonP

TPflight

TgetoffP

— -
TCride

Phangar

Tdest

6.3.2 TMDL Description

The STDL descriptions of th&raveler Systertimethreads are the ones from the thesis
and are reproduced in figure 9. To completeTthtDL description (filenewtrav.td), we
add the internal and interaction sections derived from the grouped LARG.

Timethread descriptions also have their level of specification defined. In our case, they
are all set to simple instance with end recursnRec).
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FIGURE 9. TMDL description of the traveler system (newtrav.tdl)
{ This is a new version of the traveler example developed in the thesis. }
{ It includes modifications to satisfy compiler’s restrictions on loops }
{ Daniel Amyot, 22/09/94 }
Map TaxiCompany is

Internal  TPhoneD, TgetinC, TCride, TgetoutC, TgetonP, TPFlight,
TgetoffP, Pready, Phangar, Din, DaskC, Dout, Cin, Cout

{ Grouping from the thesis }

Interactions
Traveler, &Grl on TphoneD, TgetinC, TCride, TgetoutC,

TgetonP, TPflight, TgetoffP;
where

Group &Grl is

Plane, &Gr2 on Nothing
where
Group &Gr2 is
Dispatcher, Cab on DaskC;

EndGroup {&Gr2}
EndGroup { &Grl}

Descriptions

Timethread Traveler is
EndRec { End Recursion }
Internal  Tairport { Internal action }

Trigger (Tnew)
Async (TphoneD)
Sync (TgetinC)
Action (TCride)
Sync (TgetoutC)
Action (Tairport)
Sync (TgetonP)
Action (TPflight)
Sync (TgetoffP)
Result (Tdest)
EndTT { Traveler }
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6.3.3

Timethread Dispatcher is
EndRec { End Recursion }
Constrained { Not used here. }
Internal { Internal actions }

DlookforC, Dfillstats, Dready

Trigger (Din)

Loop
Compulsory
Sync (TphoneD)
Action  (DlookforC)
Sync (DaskC) { Instead of Async (Loop restriction). }
Action (Dfillstats)
Optional
Action (Dready)
EndLoop

Result (Dout)
EndTT { Dispatcher }

Timethread Cab is

EndRec { End Recursion }
Constrained { Not used here. }
Internal { Internal actions }

CgoD, Cgarage

Trigger (Cin)
Loop { No parallel here }
Compulsory
Sync (DaskC)
Sync (TgetinC)
Action (TCride)
Sync (TgetoutC)
Optional
Action (CgoD)
EndLoop
Action (Cgarage)
Result (Cout)

EndTT { Cab}

Timethread Plane is
EndRec { End Recursion }
Trigger (Pready)

Sync (TgetonP)
Action (TPflight)
Sync (TgetoffP)
Result (Phangar)
EndTT { Plane }

EndMap { TaxiCompany }

LOTOS Specification
To get the LOTOS specification from th&IDL description, we use the command:

tmdl -i newtrav.tdl -o newtrav.lot -t newtrav.tab -e newtrav.err

Figure 10 presents the specification (filewtrav.lo}. As shown by the error file
(newtrav.erj, no errors were found during compilation:

TMDL-to-LOTOS Compiler, version 0.9.
Found 0 Warning and O Error.

LOTOS specification output.

The main points to observe in figure 10 are:

e TheTagADT description fummy_val only since no tags were used),
e The map structure,
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* The gate parameters,
* The two loop processes ([@ispatcherandCab),
* The management of unique identifers and tabulators.

FIGURE 10. LOTOS specification of the traveler system (newtrav.lot)
(* TMDL-to-LOTOS Compiler, version 0.9. *)

specification TaxiCompany[Tdest, Tnew]: noexit
library

Boolean, NaturalNumber
endlib

(* Tag ADT definition *)
type Tag is Boolean, NaturalNumber
sorts Tag
opns dummy_val : -> Tag
N : Tag -> Nat
_eq_,_ne_: Tag, Tag ->Bool
egns forall x,y: Tag

ofsort Nat
N(dummy_val)=0; (* dummy value *)
ofsort  Bool

xeqy = N(x) eq N(y);
X ney = not(x eqy);
endtype

behaviour

hide Cin, Cout, DaskC, Din, Dout, Phangar, Pready, TCride, TgetinC,
TgetoffP, TgetonP, TgetoutC, TPFlight, TPhoneD in

(
Traveler[TCride, Tdest, TgetinC, TgetoffP, TgetonP, TgetoutC, Tnew,
TPflight, TphoneD]
|[TCride, TgetinC, TgetoffP, TgetonP, TgetoutC, TPflight, TphoneD]|

Plane[Phangar, Pready, TgetoffP, TgetonP, TPflight]
II1
(

Dispatcher[DaskC, Din, Dout, TphoneD]
|[DaskC]|
Cabl[Cin, Cout, DaskC, TCride, TgetinC, TgetoutC]
)
)
)

where
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process Traveler[TCride, Tdest, TgetinC, TgetoffP, TgetonP, TgetoutC,
Tnew, TPflight, TphoneD]: noexit =

hide Tairport in

Tnew;

(
(
TphoneD; stop
Il
TgetinC;
TCride;
TgetoutC;
Tairport;
TgetonP;
TPflight;
TgetoffP;
Tdest; Traveler[TCride, Tdest, TgetinC, TgetoffP, TgetonP,
TgetoutC, Tnew, TPflight, TphoneD] (* End recursion *)

endproc (* Timethread Traveler *)

( )

process Dispatcher[DaskC, Din, Dout, TphoneD]: noexit =
hide Dfillstats, DlookforC, Dready in
Din;

(

(
Loop_0O[DaskC, Din, Dout, TphoneD, Dfillstats, DlookforC,
Dready]>>
Dout; Dispatcher[DaskC, Din, Dout, TphoneD] (* End recursion *)

)

where
process Loop_0[DaskC, Din, Dout, TphoneD, Dfillstats, DlookforC,
Dready] : exit =
TphoneD;
DlookforC;
DaskC;
Dfillstats;

Dready;
Loop_O[DaskC, Din, Dout, TphoneD, Dfillstats, DlookforC,
Dready]

)
I
(

)
endproc  (* Loop_0 *)

exit  (* Exit Loop *)

endproc (* Timethread Dispatcher *)

( )
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process Cab[Cin, Cout, DaskC, TCride, TgetinC, TgetoutC]: noexit =
hide Cgarage, CgoD in

Cin;
(
Loop_1[Cin, Cout, DaskC, TCride, TgetinC, TgetoutC, Cgarage,
CgoD]>>
Cgarage;
Cout; Cab[Cin, Cout, DaskC, TCride, TgetinC, TgetoutC] (* End
recursion *)

)
)

where
process Loop_1[Cin, Cout, DaskC, TCride, TgetinC, TgetoutC, Cgarage,
CgoD] : exit =
DaskC;
TgetinC;
TCride;
TgetoutC;
(
CgoD;
Loop_1[Cin, Cout, DaskC, TCride, TgetinC, TgetoutC, Cgarage,
CgoD]
)
E]
exit  (* Exit Loop *)
)

endproc  (* Loop_1*)
endproc (* Timethread Cab *)

( )

process Plane[Phangar, Pready, TgetoffP, TgetonP, TPflight]: noexit =
Pready;
(

TgetonP;

TPflight;

TgetoffP;

Phangar; Plane[Phangar, Pready, TgetoffP, TgetonP, TPflight]

(* End recursion *)

endproc (* Timethread Plane *)

endspec (* Map TaxiCompany *)

6.3.4 Symbol Tables
The file newtrav.tabcontains the symbol tables presented in figure 11. There we can
find:
e The map structure.
* The line number associated with the first use of each symbol.
* Global symbol tables: timethreads with defined/used, groups with defined/used, tag
values, and activities.
* The map external and internal activities.

* The local symbol tables of the four timethreads: internal activities with type and
number of parameters involved, external activities with type and number of parame-
ters involved, and tag identifiers.
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FIGURE 11.

Symbol tables generated from the traveler system (newtrav.tab)

TMDL-to-LOTOS Compiler, version 0.9. Symbol Tables.

MAP STRUCTURE:

TaxiCompany TYPEGROUP 2 TCride, TgetinC, TgetoffP, TgetonP,
TgetoutC, TPflight, TphoneD
Traveler TYPETT O
Grl TYPEGROUP 2
Plane TYPETT O
Gr2 TYPEGROUP 2 DaskC
Dispatcher TYPETT O
Cab TYPETT O

TIMETHREAD SYMBOL TABLE:

19:Cab DEFINED USED
19:Dispatcher DEFINED USED
16:Plane DEFINED USED
12:Traveler DEFINED USED

GROUP SYMBOL TABLE:
12:Grl DEFINED  USED
16:Gr2 DEFINED  USED

TAG VALUE SYMBOL TABLE:

GLOBAL ACTIVITY SYMBOL TABLE:
64:Cgarage
66:CgoD
8:Cin

8:Cout
8:DaskC
45:Dfillstats
8:Din
47:DlookforC
8:Dout
45:Dready
8:Phangar
8:Pready
29:Tairport
7:TCride
38:Tdest
7:TgetinC
8:TgetoffP
7:TgetonP
7:TgetoutC
29:Tnew
7:TPFlight
11:TPhoneD
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MAP INTERNALS:
8:Cin

8:Cout
8:DaskC
8:Din
8:Dout
8:Phangar
8:Pready
7:TCride
7:TgetinC
8:TgetoffP
7:TgetonP
7:TgetoutC
7:TPFlight
11:TPhoneD

MAP EXTERNALS:
89:Tdest
89:Tnew

TIMETHREAD traveler INTERNALS:
29:Tairport ACTION 0 PARAMETER.

TIMETHREAD traveler EXTERNALS:

32:TCride ACTION 0 PARAMETER.
38:Tdest RESULT 0 PARAMETER.
31:TgetinC SYNC 0 PARAMETER.
37:TgetoffP SYNC 0 PARAMETER.
35:TgetonP SYNC 0 PARAMETER.
33:TgetoutC SYNC 0 PARAMETER.
29:Tnew TRIGGER 0 PARAMETER.
36:TPflight ACTION 0 PARAMETER.
30:TphoneD ASYNC 0 PARAMETER.

TIMETHREAD traveler TAG IDENTIFIERS:

TIMETHREAD dispatcher INTERNALS:

45:Dfillstats ACTION 0 PARAMETER.
47:DlookforC ACTION 0 PARAMETER.
45:Dready ACTION 0 PARAMETER.

TIMETHREAD dispatcher EXTERNALS:

52:DaskC SYNC 0 PARAMETER.
47:Din TRIGGER 0 PARAMETER.
57:Dout RESULT 0 PARAMETER.
50:TphoneD SYNC 0 PARAMETER.

TIMETHREAD dispatcher TAG IDENTIFIERS:

TIMETHREAD cab INTERNALS:
64:Cgarage ACTION 0 PARAMETER.
66:CgoD ACTION 0 PARAMETER.

TIMETHREAD cab EXTERNALS:

66:Cin TRIGGER 0 PARAMETER.
77:Cout RESULT 0 PARAMETER.
69:DaskC SYNC 0 PARAMETER.
71:TCride ACTION 0 PARAMETER.
70:TgetinC SYNC 0 PARAMETER.
72:TgetoutC SYNC 0 PARAMETER.

TIMETHREAD cab TAG IDENTIFIERS:
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TIMETHREAD plane INTERNALS:

TIMETHREAD plane EXTERNALS:

86:Phangar RESULT 0 PARAMETER.
82:Pready TRIGGER 0 PARAMETER.
85:TgetoffP SYNC 0 PARAMETER.
83:TgetonP SYNC 0 PARAMETER.
84:TPflight ACTION 0 PARAMETER.

TIMETHREAD plane TAG IDENTIFIERS:

6.3.5 Execution of the Specification with LOLA
In order to check the validity of our LOTOS specification, we use the validation tool
LOLA on a PC computer.

First of all, LOLA accepted the specification without any syntactic or semantic problem.

Then, we used step-by-step simulation to execute a sequence of action used for the vali-
dation of theTravelerspecification in the thesis. Again, the sequence was accepted and
no problem was found (fig. 12).

Finally, using theTestExpandommand, we tested that it was always possible to reach
the resulting eventdest ) for all sequences of actions. As shown by figure 13, no unde-
sirable deadlock happened and the test result becamstgpass

These simple tests do not prove that our specification is correct, but they show that it is
at least possible to play with a generated specification with standard LOTOS tools.
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FIGURE 12. Sequence of actions used during step-by-step simulation with LOLA

- tnew;

- i; (* pready *)
-i; (*cin¥®)

-i; (*din *)

- i; (* tphoned *)
- i; (* dlookforc *)
- i; (* daskc *)

- i; (* dfillstats *)
-0y (*exit®)

- i; (* dout *)

- i; (* tgetinc *)

- i; (* tcride *)

- i; (* tgetoutc *)
- (*exit®)

- i; (* cgarage *)
-i; (* cout *)

- i; (* tairport *)
- i; (* tgetonp *)
- i; (* tpflight *)
- i; (* tgetoffp *)
- i; (* phangar *)
- tdest;

PNRPRPPPOWOARRPRRRNWONRRRRNE P

FIGURE 13. Testing the reachability of activity tdest with TestExpand command under LOLA

LOLA> testexpand 12 tdest -y

Analysed states =1375
Generated transitions = 2214
Duplicated states =0
Deadlocks =0

Test result = MUST PASS .

successes = 840
stops =0
exits =0

cuts by depth =0

7.0 Future Work

Most problems enumerated in this project are related to the fact that we are using a
highly-coupled approach in our 1-pass prototype compiler. By redesigning it in a more
structured and modular way, it is possible to solve many problems.

Figure 14 presents suggests a new way of implementing the compiler. We believe it
makes problems easier to manage, and that it facilitates the modification or addition of
functionalities.
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FIGURE 14.

More structured and complete compiler

/ TMDL Description \

COW

Structure Behaviours

v

Grouped Structure

Code Gen.

v

& LOTOS Specification /

Parsing

The parser and scanner rules would not have to be changed in this approach. However,
while parsing, the semantic routines would simply generate an internal representation of
the TMDL description. The format could be a graph (LARG) representing the structure,
and syntax trees representing timethread descriptions (behaviours).

LARG Grouping

From the newly generated LARG, we could get LOTOS-representable groupings by
using the LAEG method [Bor 93]. The resulting grouped structure could be a tree like
the one used in our prototype compiler.

Static Semantic Analysis

Static semantic routines would be regroups in one module. These routines could validate
the structure and behaviour internal trees.
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Code Generation

One the trees are validated, code can be generated in an easier way because we can
traverse tree nodes to collect all the information we need. We could therefore implement
our functions in a much cleaner and clearer way, and find solutions to our current prob-
lems related to:

* ADT passing over internal synchronization events (with userofy val to get the
same number of tag parameters on each gate).

* Implementation and managemenieinory waiting places and other new ones.

* Implementation theoop construct following the thesis description, therefore elimi-
nating all the loop restrictions.

A separate code generator module would also allow for other LOTOS-like languages to

be used as output, without any modification to the parsing, LAEG, and semantic analy-

sis modules.

Of course, this approach would result in a slower 3-pass compiler, but who can’t wait a
few tenths of a second for a better solution?!

Conclusion

9.0

In this report, we presented an approach to get LOTOS specifications from timethread
maps. We use a text representation, callddDL, which is based on BNF rules. Then, a
TMDL description is compiled into a LOTOS specification that can be used to validate
the design.

We presented the language in section 3.0, with its requirements and grammar rules.
Then, we showed how this could be used in a compiler. Section 5.0 presented how our
TMDL-to-LOTOS prototype compiler was built. We deeply discussed issues and solu-
tions related to static semantic analysis and code generation. Section 6.0 showed some
tests applied to the scanner, parser, and code generator. Many coviplexoperators

were used. A complete example (ffraveler Systejnwas developed, and the resulting
specification was rapidly validated. Enhancements to the compiler design are suggested
in section 7.0.

We believe this prototype represents another step towards the design of a complex

design tool based on timethreads. Current results are very encouraging at this point, and
we hope it will raise some interest.
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Appendix A TMDL Syntax Diagrams

Here are the BNF syntax diagrams of DL grammar rules.

| R_mepid| >—(  IDENTIFIER }—>

R_intid H R_LIST_internas I'/
R_LIST internals
\-| R_LIST internals |-@-| R_intid |-/

| R_interactions |>—| R_LIST_interaction H Rﬁwherelﬁ

| R_LIST_interaction | \<|

R LIST interaction |  R_interaction |-/

R_where
]
| R_interaction |>—| Rﬁmembers R_REST _interaction H

___ Hothing>(;)
| R_REST _interaction | H
O

R_LIST_group H R_group
R_LIST_group —

R_group

R_groupid |—®-| R_interactions
| R_membersl >—| R_ttorgroup H R_LIST_membersH
<

R_LIST_membersl—O—l R_ttorgroup |/

_

R_groupid

| R_ttdescriptions |>—| R_timethread H R_LIST_timethread H

R_LIST_timethread \.I

| R_events | >—| R_eventid H R_LIST_events H
\-I R_LIST_events I-O—I R_eventid Ij

R_groupid e R_alphanum

R_stub

M= aub |
L=="1
(e ] >

R_genoptions H R_REST_stubortt

R_LIST timethred H  R_timethread |/
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| R_REST_stubortt |>—| R_internals H R_trigger H R_firstpath |—)
<> ST

| R_genoptions | >—| R_level H R_LIST_aborted H R_constrained |—>

R_LIST_aborted \~|

R_LIST aborted | R_aborted |>/

R_wpoptions R_triggerid H R_rectagvalues
[ Rifirspah | >— RLISTseg H Rresit |—

Rresitid H R sendtagvalues
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R evenid H  R_sendtagvalues () }—>
Reventid H R rectagvalues |H) —>
Rouad H RLISTseg H  RLIST choice

R_LIST choice Rouad H  RLIST sey
(o Rguad H RLIST seg

R_LIST_orfork R_guard H R_path
@

RLIST sog H Roresit

Rguad H  RLIST seg Rouad H RLIST sg —>
=0 0

RLISTseg H RLIST par

R_LIST par R_LIST seg
=

Rpah H R LIST andfork
N RUST_andork Rpan |/

Rowpoptions HOH R_eveniid H R _rectagvalues ) —>
Raagd H=H Rvaued H)}—
\-| R_rectagvalues {1} R_tagid |—/

\-I R_sendtagvalues I—@-I R_tagid I-/

R_LIST orfork

R_sendtagvalues

-Rjuard
=0 0

Rtagid H RegopH R valueid
R_guardexpr
R_guardexpr I—@-I R_boolop I-@-I R_guardexpr

R_guardexpr
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Ractiond | >—(  IDENTIFIER }—>
o
| Reventid | >—(  IDENTIFIER }—>
| rinid | >— IDENTIFIER }—>
| Rlossd | >— IDENTIFIER }—>
| Rresitid | >—(  IDENTIFIER }—>
| Resegsubid | >— IDENTIFIER }—>
| Rtagd | >~ IDENTIFIER }—>
| Ruiggerid | >—  IDENTIFIER }—>

| rRtid | > IDENTIFIER }—>
| Ruvaueid | > R_aphaum |—>
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Appendix B Tests

All tests on TMDL constructs are regrouped in one single description. The LOTOS
specification follows, and then the symbol tables are given.

B.1 TMDL Description

{ This TMDL description tests the complex TMDL constructs. }
{ Daniel Amyot, 20/09/94. }

MapTests Is

Interactions
&GrAbort, TestChoice, TestPar, TestForks, TestLoops, TestWP on Nothing;
Where
Group &GrAbort B
TestAbort, &GrAborted on Abl, Ab2;
Where
Group &GrAborted is
TestAbortedl, TestAborted2 on Nothing;
EndGroup { &GrAborted }
EndGroup { &GrAbort }

Descriptions

{ These three interacting processes test the Abort and }
{ the three levels of specification. }
Timethread TestAbort Is
NoRec
Trigger (T1)
Abort (Abl)
Abort  (Ab2)
Result (R1)
EndTT { TestAbort }

Timethread TestAbortedl Is
EndRec
AbortedOn (Abl)
Trigger (T2)
Result (R2)
EndTT { TestAbortedl }

Timethread TestAborted2 Is
ParaRec
AbortedOn (Ab2)
Trigger (T3)
Result (R3)
EndTT { TestAbortedl }

{ This timethread tests a Choice within a Choice. }
{ The Async activity is also used. }
{ Boolean operators over guards are tested }
{ Finally, tag passing over internal synchronization is tested. }
Timethread TestChoice Is
Trigger (T4 ? Cond)
Choice
Guard (Cond eq Yes)
Action  (Actl)
OR
Choice
{ Do nothing }
OR

Guard ( (Cond ne Yes) implies ( not (Cond eq No)))
Async (Act3 ! Cond)
EndChoice
EndChoice
Result (R4)
EndTT { TestChoice }
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{ This timethread tests a Par within a Par. }
{ The Async activity is also used. }
{ Finally, tag passing over internal synchronization is tested. }
Timethread TestPar Is
Trigger (T5 ? Cond)
Par
Wait (Act4)
AND
Par
Async (Act5 ! Cond)
AND
Sync (Act6)
EndPar
EndPar
Result (R5)
EndTT { TestPar }

{ Timethread that tests Orfork and AndFork }
{ with three branches. The AndFork is in the OrFork. }
{ Again, tag passing and guards are tested. }
Timethread TestForks Is

Trigger (T6 ? Condl1 ? Cond2)

OrFork
Guard (Cond2 ne No)
Continue
OR
Path
AndFork
Path
Action (Act7)
Result (Rforkl)
EndPath
AND
Path
{ Do nothing }
Result (Rfork2 ! Condl)
EndPath
AND
Path
Action (Act8)
Result (Rfork3)
EndPath
EndAndFork
Result (Rfork4)
EndPath
OR
Path
{ Do nothing }
Result (Rfork5)
EndPath
EndOrFork

Result (R6)
EndTT { TestForks }

{ Tests a loop within a loop, and value passing. }
Timethread TestLoops Is

ParaRec
Trigger (T7 ? Cond)
Loop
Compulsory
Guard (Cond ne No)
Action  (Act9)
Optional
Guard (Cond eq No)
Loop
Comp
Action (Act10)
Opt
Action (Actll)
EndLoop
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EndLoop
Result (R7)
EndTT { TestLoops }

{ Tests the different waiting place options. }
Timethread TestWP s

Trigger Time (T8)

Wait Delayed  (Actl2)

Wait Signal (Act13)

Result (R8'! TimeT8 ! SigAct13)
EndTT { TestWP }

EndMap{ Tests }

B.2 LOTOS Specification

(* TMDL-to-LOTOS Compiler, version 0.9. *)

specification Tests[Abl, Ab2, Actl, ActlO, Actll, Actl2, Actl3, Act3,
Act4, Act5, Act6, Act7, Act8, Act9, R1, R2, R3, R4, R5, R6, R7, RS,
Rforkl, Rfork2, Rfork3, Rfork4, Rfork5, T1, T2, T3, T4, T5, T6, T7,
T8]: noexit

library
Boolean, NaturalNumber
endlib

(* Tag ADT definition *)
type Tag is Boolean, NaturalNumber
sorts Tag
opns dummy_val, No, OK, TOut, Yes : -> Tag
N : Tag -> Nat
_eq_,_ne_:Tag, Tag ->Bool
egns forall x,y: Tag
ofsort Nat
N(dummy_val)= 0; (* dummy value *)
N(No) = Succ(N(dummy_val));
N(OK) = Succ(N(No));
N(TOut) = Succ(N(OK));
N(Yes) = Succ(N(TOut));
ofsort Bool
x eqy = N(x) eq N(y);
X ne y = not(x eq y);
endtype

behaviour
TestAbort[Abl, Ab2, R1, T1]
[[Abl, Ab2]|
TestAborted1[Abl, R2, T2]
Il
TestAborted2[Ab2, R3, T3]

lIl'lestChoice[Actl, Act3, R4, T4]

TestPar[Act4, Act5, Act6, R5, T5]

lIl'lestForks[Act7, Act8, R6, Rfork1, Rfork2, Rfork3,Rfork4, Rfork5,T6]
lIl'lestLoops[Actlo, Actll, Act9, R7, T7]

[|
TestWP[Actl12, Actl3, R8, T8]
)

where
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process TestAbort[Abl, Ab2, R1, T1]:
T1,

(
Abl; (* Abort event *)
Ab2; (* Abort event *)
R1; stop (* No recursion *)

)
endproc (* Timethread TestAbort *)

process TestAborted1[Abl, R2, T2]:
T2,

noexit

noexit =

(
R2; TestAborted1[Abl, R2, T2] (* End recursion *)

)
[> abl; TestAborted1[Abl, R2, T2]
endproc (* Timethread TestAbortedl *)

( )
process TestAborted2[Ab2, R3, T3]:
(

T3;

R3; stop

noexit =

Il
TestAborted2[Ab2, R3, T3] (* Parallel recursion *)

)
[> ab2; TestAborted2[Ab2, R3, T3]
endproc (* Timethread TestAborted2 *)

( )

process TestChoice[Actl, Act3, R4, T4]:
hide Sync_Or_0, Sync_Or_1 in

T4 ? Cond:Tag;

(
(

(
[Cond eq Yes]->
Actl;
Sync_Or_0! Cond; stop

(
Sync_Or_1! Cond,;

noexit

stop

[(Cond ne Yes) implies (not(Cond eq No))]->

Act3 ! Cond,;
I
Sync_Or_1! Cond;
)
|[Sync_Or_1]|
Sync_Or_1 ? Cond:Tag;
Sync_Or_0! Cond; stop
)
)
[[Sync_Or_0]|
Sync_Or_0 ? Cond:Tag;
R4, stop (* No recursion *)

endproc (* Timethread TestChoice *)

stop

stop
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( )
process TestPar[Act4, Act5, Act6, R5, T5]: noexit =
hide Sync_And_2, Sync_And_3 in

T5 ? Cond:Tag;

(
(

Act4;
Sync_And_2 ! Cond; stop

?([Sync_And_2]|

(
(

Act5 ! Cond; stop

Il
Sync_And_3! Cond; stop

%([Sync_And_S]|

Act6;
Sync_And_3! Cond; stop

)

|[Sync_And_3]|

Sync_And_3 ? Cond:Tag;

Sync_And_2 ! Cond;stop
)

)

|[Sync_And_2]|

Sync_And_2 ? Cond:Tag;

R5; stop (* No recursion *)

endproc  (* Timethread TestPar *)

( )

process TestForks[Act7, Act8, R6, Rforkl, Rfork2, Rfork3, Rfork4,
Rfork5, T6]: noexit =
T6 ? Cond1:Tag ? Cond2:Tag;
(

(
(
(
Act7;
Rforkl; stop
I}
Rfork2 ! Cond1; stop
11
Act8;
Rfork3; stop
Rfork4; stop (* No recursion *)
)
)
E]
Rfork5; stop (* No recursion *)

[Cond2 ne No]->
R6; stop (* No recursion *)

)
)

endproc (* Timethread TestForks *)
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( )

process TestLoops[Act10, Actll, Act9, R7, T7]: noexit =
T7 ? Cond:Tag;
( (
Loop_4[Act10, Actll, Act9, R7, T7](Cond) >>
accept Cond :Tag in
R7; stop

Il
TestLoops[Actl10, Actll, Act9, R7, T7] (* Parallel recursion *)
)

)
where
process Loop_5[Actl0, Actll, Act9, R7, T7](Cond :Tag): exit (Tag) :=
Actl0;
(
Actll;
Loop_5[Act10, Actll, Act9, R7, T7](Cond)
)
E]
exit (Cond) (* Exit Loop *)
)
endproc  (* Loop_5 *)
process Loop_4[Actl0, Actll, Act9, R7, T7](Cond :Tag): exit (Tag) :=
Act9;

(
(
[Cond eq No]->
Loop_5[Actl0, Actll, Act9, R7, T7](Cond) >>

accept Cond :Tag in
Loop_4[Act10, Actll, Act9, R7, T7](Cond)

[Cond ne No]->
exit (Cond) (* Exit Loop *)
)
endproc  (* Loop_4 *)
endproc (* Timethread TestLoops *)

( )
process TestWP[Actl12, Actl3, R8, T8]: noexit =

hide Delay_8, Sync_Signal_9, Sync_Time_7, TimeQut_6 in
TimeOut_6; (* Timeout occured *)
Sync_Time_7 ! TOut; stop

0
T8; (* Event occured *)
Sync_Time_7 ! OK; stop

)
[[Sync_Time_7]|
Sync_Time_7 ? TimeT8:Tag;

Delay_8; (* Internal delay *)

Actl2;

(

Actl3; Sync_Signal_9! TimeT8! Yes; stop (* Signal occured *)
]
Sync_Signal_9 ! TimeT8 ! No; stop (* No signal occured *)

[[Sync_Signal_9]|
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Sync_Signal_9 ? TimeT8:Tag ? SigActl13:Tag;
R8 ! TimeT8 ! SigActl3; stop (* No recursion *)

)
endproc  (* Timethread TestWP *)

endspec (* Map Tests *)

B.3 Symbol Tables
TMDL-to-LOTOS Compiler, version 0.9. Symbol Tables.

MAP STRUCTURE:

Tests TYPEGROUP 6
GrAbort TYPEGROUP 2 Abl, Ab2
TestAbort TYPETT O
GrAborted TYPEGROUP 2
TestAborted1 TYPETT O
TestAborted2 TYPETT O
TestChoice TYPETT O
TestPar TYPETT O
TestForks TYPETT O
TestLoops TYPETT O
TestWP TYPETT O

TIMETHREAD SYMBOL TABLE:

10:TestAbort DEFINED USED
13:TestAborted1 DEFINED USED
13:TestAborted2 DEFINED USED
7:TestChoice DEFINED USED
7:TestForks DEFINED USED
7:TestLoops DEFINED USED
7:TestPar DEFINED USED
7:TestWP DEFINED USED

GROUP SYMBOL TABLE:
7:GrAbort DEFINED USED
10:GrAborted DEFINED  USED

TAG VALUE SYMBOL TABLE:

57:No DEFINED USED
146:0K DEFINED UNUSED
146:TOut DEFINED  UNUSED
51:Yes DEFINED  USED

GLOBAL ACTIVITY SYMBOL TABLE:
24:Abl
25:Ab2
52:Actl
135:Act10
137:Actll
147:Actl2
148:Actl13
58:Act3
71:Act4
74:Act5
76:Act6
96:Act7
106:Act8
130:Act9
147:Delay_8
26:R1
33:R2
40:R3
61:R4
79:R5
119:R6
140:R7
149:R8
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97:Rfork1
102:Rfork2
107:Rfork3
110:Rfork4
115:Rfork5
70:Sync_And_2
73:Sync_And_3
50:Sync_Or_0
54:Sync_Or_1
148:Sync_Signal_9
146:Sync_Time_7
23:T1

32:T2

39:T3

49:T4

69:T5

87:T6

126:T7

146:T8
146:TimeOut_6

MAP INTERNALS:

MAP EXTERNALS:
152:Abl
152:Ab2
152:Actl
152:Act10
152:Actll
152:Act12
152:Actl13
152:Act3
152:Act4
152:Act5
152:Act6
152:Act7
152:Act8
152:Act9
152:R1
152:R2
152:R3
152:R4
152:R5
152:R6
152:R7
152:R8
152:Rfork1
152:Rfork2
152:Rfork3
152:Rfork4
152:Rfork5
152:T1
152:T2
152:T3
152:T4
152:T5
152:T6
152:T7
152:T8

TIMETHREAD testabort INTERNALS:

TIMETHREAD testabort EXTERNALS:

24:Ab1 ABORT 0 PARAMETER.
25:Ab2 ABORT 0 PARAMETER.
26:R1 RESULT 0 PARAMETER.
23:T1 TRIGGER 0 PARAMETER.

TIMETHREAD testabort TAG IDENTIFIERS:
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TIMETHREAD testabortedl INTERNALS:

TIMETHREAD testabortedl EXTERNALS:

31:Abl ABORTED 0 PARAMETER.
33:R2 RESULT 0 PARAMETER.
32:T2 TRIGGER 0 PARAMETER.

TIMETHREAD testabortedl TAG IDENTIFIERS:

TIMETHREAD testaborted2 INTERNALS:

TIMETHREAD testaborted2 EXTERNALS:

38:Ab2 ABORTED 0 PARAMETER.
40:R3 RESULT 0 PARAMETER.
39:T3 TRIGGER 0 PARAMETER.

TIMETHREAD testaborted2 TAG IDENTIFIERS:

TIMETHREAD testchoice INTERNALS:
50:Sync_Or_0 CHOICE 0 PARAMETER.
54:Sync_Or_1 CHOICE 0 PARAMETER.

TIMETHREAD testchoice EXTERNALS:

52:Actl ACTION 0 PARAMETER.
58:Act3 ASYNC 1 PARAMETER.
61:R4 RESULT 0 PARAMETER.
49:T4 TRIGGER 1 PARAMETER.

TIMETHREAD testchoice TAG IDENTIFIERS:
49:Cond DEFINED  USED

TIMETHREAD testpar INTERNALS:
70:Sync_And_2 PAR 0 PARAMETER.
73:Sync_And_3 PAR 0 PARAMETER.

TIMETHREAD testpar EXTERNALS:

71:Act4 WAIT 0 PARAMETER.
74:Acts ASYNC 1 PARAMETER.
76:Act6 SYNC 0 PARAMETER.
79:R5 RESULT 0 PARAMETER.
69:T5 TRIGGER 1 PARAMETER.

TIMETHREAD testpar TAG IDENTIFIERS:
69:Cond DEFINED  USED

TIMETHREAD testforks INTERNALS:

TIMETHREAD testforks EXTERNALS:

96:Act7 ACTION 0 PARAMETER.
106:Act8 ACTION 0 PARAMETER.
119:R6 RESULT 0 PARAMETER.
97:Rforkl RESULT 0 PARAMETER.
102:Rfork2 RESULT 1 PARAMETER.
107:Rfork3 RESULT 0 PARAMETER.
110:Rfork4 RESULT 0 PARAMETER.
115:Rfork5 RESULT 0 PARAMETER.
87:T6 TRIGGER 2 PARAMETERS.
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TIMETHREAD testforks TAG IDENTIFIERS:
87:Condl DEFINED  USED
87:Cond2 DEFINED  USED

TIMETHREAD testloops INTERNALS:

TIMETHREAD testloops EXTERNALS:

135:Act10 ACTION 0 PARAMETER.
137:Actll ACTION 0 PARAMETER.
130:Act9 ACTION 0 PARAMETER.
140:R7 RESULT 0 PARAMETER.
126:T7 TRIGGER 1 PARAMETER.

TIMETHREAD testloops TAG IDENTIFIERS:
126:Cond DEFINED USED

TIMETHREAD testwp INTERNALS:

147:Delay_8 DELAY 0 PARAMETER.
148:Sync_Signal_9 TIME 1 PARAMETER.
146:Sync_Time_7 TIME 1 PARAMETER.
146:TimeOut_6 TIME 0 PARAMETER.

TIMETHREAD testwp EXTERNALS:

147:Actl12 WAIT 0 PARAMETER.
148:Actl13 WAIT 0 PARAMETER.
149:R8 RESULT 2 PARAMETERS.
146:T8 TRIGGER 0 PARAMETER.

TIMETHREAD testwp TAG IDENTIFIERS:
148:SigAct13 DEFINED  USED
146:TimeT8 DEFINED  USED
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