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Abstract
A design methodology which allies the graphical expressiveness of the timethread no
with the analytical power of the LOTOS language and its associated tools is presente
concept of timethread is at the basis of a design methodology based on scenarios. A
telephone system is used as an example. It is shown how the main scenarios of such a
can be expressed by the timethread notation, leading to an abstract system design. Furt
shown how the notation can be translated into LOTOS. LOTOS tools are used to valida
high-level design. Tools used include LOLA for analysis and design testing, LMC for che
temporal logic properties, and GOAL for checking reachability of actions. 

Keywords
FDT-based software engineering, tools and tool support, design and design validation, t
reads, LOTOS

1 INTRODUCTION

1.1 Context and motivation

A software design methodology should meet two criteria: expressiveness and flexibility 
design language, and power of analysis and validation methods. For this reason, one
design methods that are based on expressive visual design notations, and formal analys
ods that are based on sound theoretical foundations. Design methods are intended to be
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system designers (architects or engineers) to describe systems (or system properties,
scenarios, architecture and data transformation), while formal methods are used to ver
the system has the desired properties.

Timethreads (Buhr and Casselman, 1992 and 1995) are a high-level design notatio
distributed systems that expresses scenario paths. In this paper, we show how the form
guage LOTOS and its associated analysis methods and tools can be used to analyze 
date timethreads visual design descriptions.

Scenario-based approaches are now widely used in industry for the design of distr
systems. One of the main reasons is that scenarios describe top-level critical requireme
need to be fulfilled by any detailed design, and thereafter by implementations. Also, sce
can usually be obtained easily from requirements. They express sequences of activit
need to be executed within the system in order to produce correct outputs from trig
events. 

The concept of timethreads has been defined to be used in early stages of design
level design) to capture the different scenario paths that should drive the design process. Th
are used as a thinking tool in the requirement analysis phase where system designer
understand the set of requirements as a whole before stepping into the detailed-design
Timethreads are defined as scenario paths because they illustrate paths along which s
flow in the system.

One of the particularities of the timethread methodology is that individual timethr
can be composed into a diagram called timethread map. Also, unlike other models for scenari
description, timethreads make abstraction of specific mechanisms of component inter
They provide for a notion of refinement of activities from a level of abstraction to the next.

Timethreads exist independently of any system structure, or decomposition. How
they are usually superimposed on structures, in which case they illustrate the seque
activities through the set of system components. In this case, timethread activities, also
responsibilities in the timethread literature, are assigned to system components that be
responsible to execute them in the detailed-design.

Space does not allow us to mention all aspects of the timethread methodology. Su
to say that it covers different stages of high-level design development.

The ISO standard FDT (Formal Description Technique) LOTOS (ISO, 1988) is us
this project for formal analysis and validation purpose. The reasons for choosing LOTO
multiple. LOTOS allows to express both individual timethreads, as LOTOS processes
interactions between timethreads in timethread maps, as LOTOS process interactions. I
cutable with a formal operational semantics. Also, LOTOS possesses a hide operator that
allows the designer to explicitly hide some gates in the specification, without having to m
the rest of the specification. This allows designers to focus on certain sets of activities
executing a specification. Finally, since LOTOS is an ISO standard, the number of too
support it and the analysis and validation power of these tools are constantly increasing

Research on integrating LOTOS in a design discipline which was a forerunner of tim
reads was described in (Vigder and Buhr, 1992). Timethreads were then called slices. In the
context of object-oriented systems (Buhr and Casselman, 1995), the authors renamed
reads as use case paths.
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1.2 Objectives

The objective of this project is to define a formal framework that will allow designers to 
lyze and validate a high-level design (a timethread map) against requirements (see Figu

Figure 1   Validation of high-level design w.r.t. requirements.

This paper gives an overview of our formal framework for timethreads. Our approach to g
ate LOTOS specifications from timethread maps is based on the concept of formal interpreta-
tion methods defined in (Bordeleau, 1993). Formal interpretation methods allow the map
of design models onto formal models that can be analyzed and validated. The LOTOS in
tation method for timethreads, which is described in detail in (Amyot, 1994), is br
described in this paper (Section 2). We illustrate the use of the interpretation method by 
part of the LOTOS specification resulting from the interpretation of the timethread map
case study: a simplified telephone system. We discuss how the resulting specifica
obtained.

One important aspect of timethread maps that can be analyzed using our formal 
work is the emergence of new unexpected scenarios, i.e. scenarios that were not intende
timethread map, but that emerge from the interaction of timethreads that are described
map. Such unexpected scenarios can be acceptable or not in the context of the syste
identification of such scenarios is critical in distributed system design, and it constitutes a
cult problem which is sometimes called feature interaction problem. We also analyze timeth-
read maps with respect to deadlocks, non-deterministic sequences of activities an
conditions. We briefly discuss a few LOTOS tools used for the analysis and validation of
thread maps.

For simplicity, this paper emphasizes scenario aspects and makes abstraction fr
notion of components, although components are shown in the timethreads maps, and alth
the timethread methodology has a well-defined role for them.

2 METHODOLOGY

2.1 LOTOS Interpretation Method for timethreads

In this section, we briefly describe the LOTOS interpretation method for timethreads th
been defined in (Bordeleau and Amyot, 1993). In the context of our interpretation metho
use the language TMDL (Timethread Map Description Language) for the textual description of
timethread maps. The method, illustrated in Figure 2, allows the generation of LOTOS s
cations from timethread maps. This method is mainly composed of four different sub-me
the timethread map decomposition (M1), the structure interpretation (M2), the single timeth-
read interpretation (M3) and the LOTOS specification composition (M4). 

Requirements
Scenarios

(timethreads)
High-Level Design
(timethread map)

Analysis &
Req.

Capture Composition

Validation
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TMDL Description of Timethread Maps: TMDL (Amyot, 1994) is used to represen
timethread maps in a textual form. It is the starting point of our LOTOS interpretation me
This language expresses both the topology of interacting timethreads and individual t
reads in a map. A prototype tool has been implemented to compile TMDL description
LOTOS specifications. TMDL itself will not be discussed much further in this paper, but it
be used it in two short examples to explain the transition from the graphical timethread m
the textual LOTOS specification.

Figure 2   LOTOS interpretation method for timethreads.

Timethread Map Decomposition Method (M1): Timethread maps are composed of
set of interacting timethreads. Formal interpretation methods deal separately with structu
behaviour. For this reason, the first step (M1) decomposes a timethread map into a set of in
vidual timethreads (the Descriptions  section of the TMDL description) and a timethrea
topology, i.e., a set of timethread interactions (the Interactions  section of TMDL).

Structure Interpretation Method ( M2): The goal of this method is to generate 
LOTOS structure expression which expresses the topology of interacting timethreads in
tem. The generation of this LOTOS expression is based on a method defined in (Bord
1993). Other similar methods, where graph structures are transformed into LOTOS expre
(trees), can be found in (Bolognesi, 1990, de Frutos-Eserig, 1993, and Hinterplattner a
1993).

LOTOS specification

Timethreads
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Single Timethread Interpretation Method (M3): This method aims at generatin
LOTOS behaviour expressions from single timethreads. Each behaviour expressio
LOTOS process corresponding to its associated timethread.

Specification Composition Method (M4): We collect the structure expression and t
set of behaviour expressions previously generated to produce a LOTOS specification.

2.2 Analysis and validation in LOTOS

Being formal and algebraic in nature, LOTOS lends itself to validation activities, which o
are based on bisimulation concepts. This can help verifying that two specifications at tw
ferent levels of abstraction, or having different structures, are indeed comparable. If a L
specification has a finite model, temporal logic analysis, such as model-checking, is po
Being executable, a LOTOS specification produces a prototype of the entity specified, 
type which can be analyzed and tested (design-level testing). This opens a number of po
ties for validation, of which a few are demonstrated later in this paper.

In our methodology, a formal interpretation model (LOTOS) is obtained from a semi
mal notation (Timethreads). Therefore, the correctness of a timethread-to-LOTOS tran
cannot be ensured.

3 EXAMPLE OF A SIMPLIFIED TELEPHONE SYSTEM

3.1 System description

We use the connection phase of a simplified telephone system to illustrate the metho
because most people intuitively know and understand this application. An Initiator tries to
establish a connection with a Responder via a simple Switch, and several results, such as
completed connection, a disconnection, a wrong number, a busy tone, etc., can occ
hereby define the activities that are used in our example as the requirements:

The Initiator:
• OffHook: picks the phone up. This is the first activity that initiates the connec

phase.

• HangUp: hangs up. This activity can occur any time after a OffHook. It cancels the
connection and disconnects the initiator. 

• Tone: hears the dial tone. It occurs after RegInit.

• Dial: dials the phone number of the responder. At this level of abstraction, we as
it to be an atomic activity. It occurs after Tone.

• ErrorDial : receives an indication telling that an error occurred while dialing. The o
option afterwards is for the initiator to hang up. It occurs if Dial does not occur in
time.

• WrongNumber: receives an indication that the number does not exist. The only op
afterwards is for the initiator to hang up. It occurs as a result of CheckDB.
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• BusyTone: receives an indication telling that the responder is already using her ph
The only option afterwards is for the initiator to hang up. It occurs as a resu
CheckDB.

• NoAnswer: receives an indication telling that the responder has not responded in
The only option afterwards is for the initiator to hang up. It occurs if Answer does not
occur in time

The Responder: 
• Ring: can hear the phone ringing. It occurs after CheckDB if the responder is free.

• Answer: picks up the phone to answer the call. It can occur after Ring.

The Switch:
• RegInit: registers and initializes the user in its database. First activity after OffHook.

• CheckDB: checks the responder in the database. Indicates whether she exists 
and whether her phone is already busy or not. It occurs after a correct dialing.

• Connected: indicates the expected end of the connection phase. Results from a c
answering.

• Disconnected: goes to this state after HangUp in connection phase, and updates t
database.

Note that our presentation is at an abstraction level where detailed-design mechanisms
considered, for instance we do not consider the number of users. Such items can be con
later in the design process.

3.2 Timethread map

In this section, we introduce the Timethread methodology by describing how single tim
reads and composed timethread maps are constructed from requirements.

Single timethreads
The notation used to construct single timethreads includes several basic symbols that a
tified in the Timethread map 1. Such a typical timethread starts with a waiting-place (trigger-
ing event ) and ends with a junction point (resulting event ). The body, on which activities
are sequentially placed, links the triggering event to its resulting event(s). Notions su
choice, parallelism, time-out and synchronization can also be expressed.

Timethread map 1:  Successful connection.

Triggering
Event

Resulting
Event

Activities

Body

Waiting-
Place

ToneOffHook

Dial
CheckDB

Connected

Initiator ResponderSwitch

RegInit

Answer

ConnectionPhase

Ring
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This first timethread presents the traditional scenario path of a successful connection 
The second timethread (Timethread map 2) illustrates the path where the initiator rece
busy signal, as a result of the responder’s phone being already busy. Other timethread
be derived from the requirements, but we will consider these two only to illustrate the ke
tures of the methodology.

Composed timethread maps
The methodology allows the composition of multiple paths in a single map. The result of
thread composition is either the merging of several timethreads into a single one that
alternate paths (choice), e.g. Timethread map 3, or the connection of timethreads in a
map, e.g. Timethread map 4. In the latter case, timethreads interact using internal 
Merged and connected timethreads provide new scenario paths resulting from the comp
of simpler ones.

Timethread map 3 presents a merging of maps 1 and 2; they have a common sequ
activities and then a choice has to be made based on the system state (information r
from CheckDB) in order to follow one path or the other.

Interactions may occur on waiting-places and junction points. For instance, two syn
nous interactions occur between timethreads ConnectionPhase and Dialing on the waiting-
places GiveTone and GotDial (two new internal activities) in Timethread map 4.

The in-passing semantics of interactions is visually represented by the triggering eve
a timethread TT1 being juxtaposed to the body of a timethread TT2. When TT2 reaches this
point on the path, it triggers TT1 and then continues. This is the case for activity GiveTone in
Map 4. A waiting-place on a body waits for an event to occur from the environment (ex.: Dial)
or from the result of another timethread (ex.: GotDial). 

Several types of transformations, such as splitting, extension, and refinement, c
applied on timethread maps. Map 4 is the result of two such transformations applied to M

The successful connection has been extended with a new alternative result (ErrorDial ),
caused by a time-out during the dialing. This time-out occurs at the time waiting-place
GotDial, which then returns TOut (a tag, or a value) as a result. Note that guards ([TOut] and
[OK] ) have been added on the alternative paths. Then, a segment of the path is split to allow
parallelism between the dialing sequence and the rest of the path starting with the time w
place. The timethread Dialing is therefore created and finally composed with the original Con-
nectionPhase timethread on two synchronization points.

The broken arrow ( ) represents an abort activity, which means that EndDial (an inter-
nal activity) will destroy or disable ongoing scenarios along the timethread Dialing, similarly
to a reset feature.

Timethread map 2:  Initiator gets a busy tone. Timethread map 3:  Merging of Map 1 and Map 2.

ToneOffHook

Dial
CheckDB

BusyTone

Initiator ResponderSwitch

RegInit

ConnectionPhase

ToneOffHook

Dial
CheckDB

BusyTone

Initiator ResponderSwitch

RegInit

Answer

Ring

Connected

ConnectionPhase
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Final timethread map
Along the way, we could create many single timethreads and compose or transform the
more complex timethread maps, as we did for Timethread map 4. We do so until we rea
point where we have captured all the requirements. The final Timethread map 5 represe
requirements at the level of abstraction chosen for this paper. Although space constraints
us to cover here the complete process that led to this map, we raise several points to 
reader a better understanding of the timethread methodology and the operations involve

Timethread map 5:  Simple telephone connection (Final map).

Timethread map 4:  Splitting and extension of Map 1.

OffHook

Dial
CheckDB

Connected

Initiator ResponderSwitch

RegInit

Answer

Tone GiveTone
GotDial

[OK]
[TOut]

Dialing

EndDial

Ring

ErrorDial

ConnectionPhase

Tone

OffHook

Dial
GiveTone

GotDial

HangUp
Disconnected

ErrorDial
[OK][TOut]

CheckDBWrongNumber

BusyTone

GotAnswer

Answer

Ring

EndConnect

EndDial

EndRing

[OK]

Connected

AskAnswer

[TOut]
NoAnswer

Initiator Responder

Switch

Disconnecting

Dialing

ConnectionPhase

Answering

EndRing

AllowHangup
RegInit

EndDial
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Our design process resulted in four interconnected timethreads:

• ConnectionPhase: Gives the initiator the result of the triggering event OffHook. Trig-
gers the three other timethreads along the path.

• Disconnecting: Manages the HangUp activity and then returns to a disconnected sta

• Dialing: Manages the initiator’s activity Dial.

• Answering: Manages the responder’s activity Answer.

To compose these timethreads (synchronously), several new internal events were create

• AllowHangup: Triggers the Disconnecting timethread that allows the HangUp event
to be received.

• GiveTone: Triggers the Dialing timethread.

• GotDial: Indicates that the Dial arrived in time. This is a time waiting-place, so 
time-out could occur (with the tag value TOut as a result).

• AskAnswer: Triggers the Answering timethread.

• GotAnswer: Indicates that the Answer arrived in time. This is a time waiting-place, s
a time-out could occur (with the tag value TOut as a result).

• EndConnect: Aborts the timethread ConnectionPhase.

• EndDial: Aborts the timethread Dialing.

• EndRing: Aborts the timethread Answering.

In the Disconnecting timethread, we also find an instance of three activities (EndConnect, End-
Dial, EndRing) that are performed in parallel.

3.3 Application of the Interpretation Method

Once we have a satisfactory timethread map, we use the LOTOS interpretation method 
erate the specification to be analyzed and validated against the system requirements.

 As a result of the timethread map decomposition, we obtain a timethread topology
as the one in Figure 3(a), and a set of single timethreads descriptions, such as the one i
4(a). Both come from their respective sections in the TMDL description. We do not sho
final map as an example because it involves too many details. Its TMDL description
LOTOS specification are available upon request to the authors.

Note that we can define internal activities both globally in the map and locally in a t
thread (see the two examples). For that purpose, we use the LOTOS hide operator in the speci-
fications. Any activity can be defined as internal, depending on the level of abstraction.

The second step in the LOTOS interpretation method consists in the application 
structure interpretation method, where a LOTOS structure is generated from the topol
interacting timethreads (the Interactions  section in TMDL). In Figure 3(b), the resul
obtained from our compiler is shown. We can observe that timethread interactions are m
onto synchronization gates in the LOTOS specification, and individual timethreads are m
onto LOTOS processes.



gener-
s (from
es,
in the
per-
ations,

 struc-
eflects
ysis and
Figure 3   Map structure (Map 4) in TMDL and LOTOS.

In the third step (see Figure 4), we apply the single timethread interpretation method to 
ate LOTOS processes, or behaviour expressions, from their corresponding timethread
the Interactions  section in the TMDL description). Note that triggers, waiting-plac
activities (actions) and results all correspond to LOTOS gates. The identifiers used 
LOTOS specification are the ones used in the TMDL description. More complex TMDL o
ators make use of other LOTOS constructs such as choices, interleavings, synchroniz
disablings, ADTs and guards, recursion, etc. In the fourth step, we combine the LOTOS
ture expression and behaviour expressions in a global LOTOS specification. The latter r
the scenario paths induced by the timethread map, and is thereafter used by the anal
validation tools.

(a) Map 4 structure: TMDL description (b) Map 4 structure: LOTOS specification

Map Map4 is

INTERNAL  { Hidden global activities }
   GiveTone, GotDial, EndDial 

INTERACTIONS  
   ConnectionPhase, Dialing 
      on   GiveTone, GotDial, EndDial;

DESCRIPTIONS
   Timethread  ConnectionPhase is
   { Single timethread description... }
   EndTT { ConnectionPhase }

   Timethread  Dialing is
   { Single timethread description... }
   EndTT { Dialing }

EndMap { Scenario4 }

specification  Map4[Answer, Connected, Dial, 
                   ErrorDial, OffHook, Ring, Tone]
                   : noexit

library
   Boolean, NaturalNumber
endlib

(* Tag ADT definition *)
type  Tag is  Boolean, NaturalNumber
   (* Type description... *)
endtype

behaviour

hide  EndDial, GiveTone, GotDial in
   (
      ConnectionPhase[Answer, Connected, EndDial,
                      ErrorDial, GiveTone, GotDial,
                      OffHook, Ring]
      |[EndDial, GiveTone, GotDial]|
      Dialing[Dial, EndDial,GiveTone, GotDial,Tone]
   )

where
   process  ConnectionPhase[...]: noexit  :=
      (* Description... *)
   endproc   (* Timethread ConnectionPhase *)

   process  Dialing[...]: noexit  := 
      (* Description... *)
   endproc   (* Timethread Dialing *)

endspec  (* Map Scenario4 *)
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Figure 4   Timethread ConnectionPhase (Map 1) in TMDL and LOTOS.

3.4 Formal analysis and validation

We now illustrate a number of LOTOS-based techniques and tools to check the high
design. With available LOTOS tools, we can analyze and test whether the specification a
all the scenarios from the requirements and refuses undesirable scenarios. We use
checking and goal-oriented execution to verify properties such as absence of deadloc
race conditions. We present in this section several key examples related to our case stu

Analysis
The composition of timethreads results in the emergence of new scenarios, sometimes u
able. The analysis of the specification corresponding to the final composed map helps 
covering these scenarios. LOTOS analysis can be done using step-by-step execution
specification with tools such as ELUDO (Ghribi and Logrippo, 1993) and LOLA (Quem
Pavón, and Fernández, 1988). We used LOLA in the following two examples.

Trace 1 in Figure 5(a) shows a global and expected scenario leading to a success
nection. Internal actions starting with a Sync_  are automatically added by our TMDL-to
LOTOS compiler for internal synchronizations. For instance, Sync_time_1  checks whether
there is a time-out or not.

Trace 2 presents a potential problem discovered in the high-level design. We see
Dial can be followed by an ErrorDial , although this is forbidden in the requirements. The er
is caused by a race condition at the waiting-place GotDial. A time-out occurred right after Dial
was performed and before GotDial was received. Other such problems can be found during
analysis phase.

The problems and issues discovered during the analysis (and also during testing a
ification) do not have to be solved at a timethread level. This might be too high a lev
abstraction to do so. The goal here is to discover potential causes of problems that m
solved during the detailed-design phase.

(a) ConnectionPhase: TMDL timethread (b) ConnectionPhase: LOTOS process

Timethread  ConnectionPhase is
   { This is the main timethread. }
   Internal
        RegInit, 
        CheckDB
   
   Trigger  (OffHook)
   Action  (RegInit)
   Action  (Tone)
   Wait  (Dial)
   Action  (CheckDB)
   Action  (Ring)
   Wait  (Answer)
   Result  (Connected)
EndTT { ConnectionPhase }

process  ConnectionPhase[BusyTone, Dial, OffHook,
                        Tone]: noexit  :=
hide  CheckDB, RegInit in

   OffHook;
   (
      RegInit;
      Tone;
      Dial;
      CheckDB;
      Ring;
      Answer;
      Connected; stop   (* No recursion *)
   )
endproc   (* Timethread ConnectionPhase *)
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Figure 5   Traces resulting from step-by-step execution with LOLA.

Testing
Step-by-step execution is useful for an intuitive discovery of problems, but the global
space is usually too large for this technique to be efficient. One way to reduce this state s
to compose the specification with a test case, hence allowing an exhaustive search for pr
in this context.

Design testing allows us to test internal activities of components by making them vi
in a grey-box fashion. One can check whether or not test cases that must be accepted
executed by the specification, and whether or not test cases that must be rejected are
forbidden by the specification. This is called acceptance/rejection testing. Our method
allows us to decide which activities should be internal and which should not, therefore le
to a high level of flexibility for the definition of test cases.

Single timethreads defined while constructing the final map can be used as acce
test cases. These usually are straightforward scenarios that must be found in the co
map. Figure 6(a) presents a successful-connection test case derived, using the single
read interpretation method, from the timethread in Map 1. We used the testing capabili
LOLA to validate Test1 against the specification, and the result was a MAY PASS verdict. We
can see from Figure 6(b) that 355 scenarios (traces) are possible, from which 20 lead 
cesses and 335 lead to deadlocks. This result is due to the combinations of possibilities w
time-out occurs (at GotDial or GotAnswer). Figure 6(c) presents one of these unexpected s
narios that were obtained from LOLA.

(a) Trace 1: Successful connection (b) Trace 2: Race condition while dialing

 [  1] - offhook;
 [  1] - i; (* reginit *)
 [  1] - i; (* allowhangup *)
 [  1] - i; (* givetone *)
 [  3] - tone;
 [  3] - dial;
 [  2] - i; (* gotdial *)
 [  1] - i; (* sync_time_1 ! ok *)
 [  1] - i; (* checkdb *)
 [  3] - i; (* askanswer *)
 [  3] - ring;
 [  3] - answer;
 [  2] - i; (* gotanswer *)
 [  1] - i; (* sync_time_3 ! ok ! ok *)
 [  1] - connected;

 [  1] - offhook;
 [  1] - i; (* reginit *)
 [  1] - i; (* allowhangup *)
 [  1] - i; (* givetone *)
 [  3] - tone;
 [  3] - dial;
 [  1] - i; (* timeout_0 *)
 [  1] - i; (* sync_time_1 ! tout *)
 [  1] - i; (* enddial *)
 [  1] - errordial;
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Figure 6   Acceptance Test 1, derived from Map 1.

Test cases can also be generated by hand in LOTOS. For instance, Test2 (Figure 7) is an accep-
tance test case checking that connections are impossible when the responder does not
the Answer activity. The result shows that 12 scenarios successfully satisfy the test an
there is no rejection. Therefore the verdict is a MUST PASS, as expected.

Rejection test cases are LOTOS processes that must deadlock in all cases whe
posed with the specification. Such tests could also be defined for our case study.

Figure 7   Acceptance Test 2.

(a) Acceptance Test 1: LOTOS process (b) Execution on LOLA (c) Example of Unex-
      pected scenario

process  Test1[Answer,Connected,Dial, 
              OffHook, Ring, Tone, 
              Success]: noexit  :=
(* Comes directly from map 1 *)
   hide  CheckDB, RegInit in
      OffHook;
      (
         RegInit;
         Tone;
         Dial;
         CheckDB;
         Ring;
         Answer;
         Connected;
         Success; stop  
            (* No recursion *)
      )
   endproc   (* Test1 *)

lola> TestExpand 100 Success
      Test1 -y -i

  Analysed states       = 1083
  Generated transitions = 1102
  Duplicated states     = 0
  Deadlocks             = 335

  Process Test = test1
  Test result  = MAY PASS.

  355 executions analysed:

              successes = 20
                  stops = 335
                  exits = 0
          cuts by depth = 0

offhook;
i; (* reginit *)
i; (* reginit *); 
i; (* allowhangup *)
i; (* givetone *)
tone;
dial;
i; (* checkdb *)
i; (* timeout_0 *)
i; (* sync_time_1 
      ! tout *)
i; (* enddial *)
stop  

(a) Acceptance Test 2: LOTOS process (b) Execution on LOLA

process  Test2[BusyTone, Dial, OffHook, Tone, 
              Success,NoAnswer,ErrorDial]: noexit :=
(* More complex test checking that we cannot be *)
(* connected if the responder does not answer *)
      OffHook;
      (
         (
            Tone;
            Dial;
            BusyTone; Success; stop  
                               (* No recursion *)
         )
         [> (ErrorDial; Success; stop
             []
             NoAnswer; Success; stop )
      )
   endproc   (* Test2 *)

lola> TestExpand 100 Success Test2 -y -i
    Analysed states       = 52
    Generated transitions = 63
    Duplicated states     = 0
    Deadlocks             = 0

    Process Test = test2
    Test result  = MUST PASS.

                   successes = 12
                       stops = 0
                       exits = 0
               cuts by depth = 0
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Verification using model-checking
Model-checking (Clarke, Emerson, and Sistla, 1986) is a technique for verifying the tru
falsehood of temporal logic properties in a model of the specification. With this techniqu
can skip non-essential activities, and thus concentrate on the important ones, in the exp
of a property. If test cases are use, instead, all intermediate external activities betwe
activities of interest must be included. 

Some of the temporal logic quantifiers allowed are AG (henceforth in all futures), AF
(eventually in all futures), EF (eventually in some future). LMC (the LOTOS Model Check
(Ghribi, 1992)) is a model-checking tool that is part of the University of Ottawa LOTOS to
ELUDO. A finite model of the specification is obtained by the tool SELA (also par
ELUDO) and then transformed into a Kripke model by LMC. Some of the design prope
checked by using LMC were: 

• EF ( ‘Connected’ ) : A connection will occur eventually in some future. This is
requirement that should be satisfied by any design. LMC indicates that this for
holds.

• AG (‘Dial’ → AF (‘WrongNumber’ ∨‘BusyTone’ ∨‘NoAnswer’ ∨‘Connected’)) :
All Dial will be followed (not necessarily immediately) by one of the four results e
merated. LMC returns a false verdict, therefore indicating a problem. There is a ra
condition at the time waiting-place GotDial and the resulting event could be Error-
Dial. This problem was previously found in the analysis, as illustrated by the se
trace of Figure 5.

• AG ( ‘Answer’ → AF (‘Connected’) ) : Every Answer will be followed (not nec-
essarily immediately) by a Connected. Although this property sounds intuitively cor
rect, LMC’s verdict is false because of a race condition at the time waiting-pla
GotAnswer, thus avoiding the Connected result.

• EF ( ‘HangUp’ → EF (‘Connected’) ) : A HangUp may be followed by a Con-
nected. This is an example of a negative property that must be rejected by our d
LMC indicates that this formula holds, so we conclude that there is another pro
at this level. In this case, a Connected could slip between HangUp and EndConnect,
indicating a third race condition.

Many more positive and negative properties derived from the requirements can be verifie
model-checking, and other problems than race conditions can be found (non-determ
wrong ordering, deadlocks, etc.).

Goal-oriented execution
One disadvantage of model-checking is that it requires a complete model of the system
constructed. For realistic systems, such models are (at best) computationally expen
obtain. Goal-oriented execution (Haj-Hussein, Sincennes and Logrippo, 1993, and Brin
and Eertink, 1993) is a LOTOS execution mode that directs execution to see whether 
action sequences can be achieved. Obviously impossible search directions are avoided
GOAL tool (also part of ELUDO). Here are several design requirements, similar to the pr
ties previously presented using temporal logic, which GOAL allows to verify:

• GOAL [Connected] : This goal checks that a Connected result can be reached
This gives the set of possible scenarios ending with this activity.
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• GOAL [Dial, ErrorDial] : This goal checks that a Dial can be reached, and
that this can be followed by an ErrorDial. The requirements state that this situatio
should not happen. However GOAL indicates that it can happen, because of th
condition at GotDial. This goal is complementary to the second temporal logic pr
erty to obtain all the traces that lead to Dial and then to ErrorDial .

• GOAL [Dial, Answer, NoAnswer] : This goal checks that a Dial can be
reached, after this an Answer can be reached, and eventually a NoAnswer can be
reached. This goal outputs the traces that invalidate the third property expressed
previous section.

Goals are useful by themselves to verify different properties, but they are also power
diagnostic tools for problems detected using model-checking.

4 CONCLUSION AND FUTURE WORK

We have demonstrated a design methodology which is based on the use of two complem
techniques: timethreads and process algebras (LOTOS). Timethreads are obtained from
ios, which in turn are obtained from requirements, and then are combined into high
designs. Timethread’s graphical notation is translated manually into the language TMDL
this automatically into LOTOS. LOTOS specifications can be analyzed, by using tools
conformance to requirements. The essential points of this process were demonstrated o
ple telephony example. The validation techniques used were acceptance/rejection 
model-checking, and goal-oriented execution. In (Amyot 1994), a much larger telepre
example was developed in a similar fashion.

Several research directions need to be pursued. Research must continue toward
mining what are the validation techniques that are useful in relation with timethread d
and towards efficiently implementing them. Tools for the methodology must be impleme
In the long range, we see an integrated environment where this type of design and val
techniques can be carried out by users familiar with timethreads only.
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