Hybrid Solutions for Feature Interaction Detection and Resolution

Muffy Calder

Mario Kolberg
Evan Magill
Stephan Reiff-Marganiec

Dave Marples

University of Glasgow

University of Stirling

Global Inventures Inc

UNIVERSITY OF STIRLING

Context of Research

Interaction Handling Techniques

- Offline:
 - not suitable in context of legacy systems, deregulated market
- Online:
 - rinformation available at runtime too limited for resolution

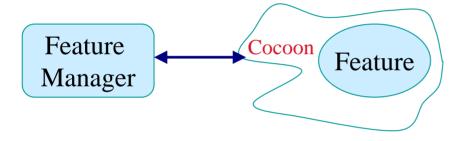
HFIG Project

- 1998-2001: funded by EPSRC, Mitel, Citel
- joint between Glasgow and Strathclyde (later Stirling) Universities
- investigate combination of offline & online techniques

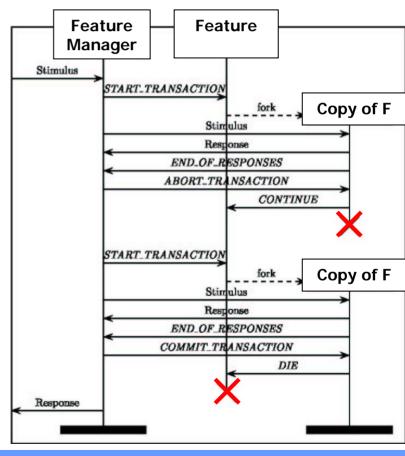
Aims and Objectives

- Detect and resolve feature interactions
 - in the presence of legacy systems
 - (fragile code, no reliable documentation)
 - in a deregulated market
 - (third party features, short development periods)
- Approach shall
 - be embeddable in legacy and new architectures
 - not require changes to features or legacy code
 - not require design time information
 - automatically detect and resolve interactions at runtime

Outline


- Types of Interactions
- Detecting Interactions at Run-time
 - ▶ Dave Marples PhD thesis
- Message-Centric Approach
 - Stephan Reiff-Marganiec PhD thesis
- User-Centric Approach
 - Mario Kolberg's PhD thesis
- Results
- Conclusions

Types of Interactions


- STI: Shared Trigger Interactions
 - more than one feature reacts to a trigger
- → Message-Centric Approach
- SAI: Sequential Action Interactions
 - one feature's actions trigger another feature
- LI: Looping Interactions
 - special case of SAI's
- → User-Centric Approach
- MTI: Missed Trigger Interactions
 - one feature's actions prevent triggering another feature

Detecting Interactions at Runtime

Features are embedded in a cocoon

- Transactional approach:
 - Commit and rollback
 - Copies of features

Message-Centric Approach

- Automatically selects good (if not best) resolutions
- Concentrates on handling STI's
- FM constructs solution space as before
- Pruning and extraction allow to find resolutions
 - Guided by general rules
- Iterative improvement
 - Analyse solution space, define rules, analyse again, refine rules, ...

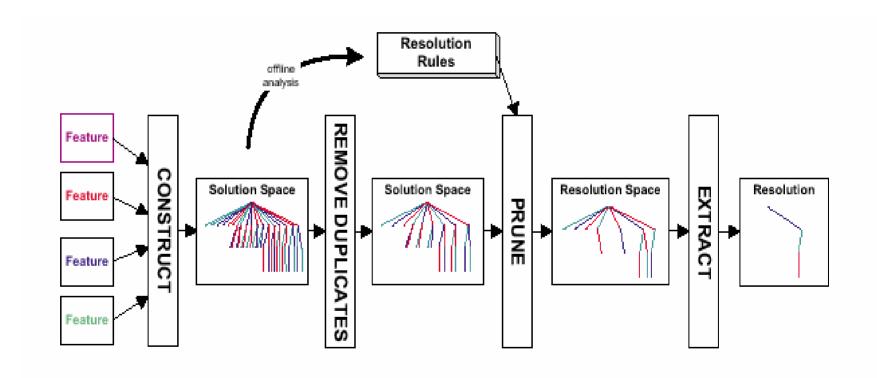
What are Solutions?

Solution

a trace from one or more features running concurrently

Solution space

the set of all solutions


Resolution

 a trace from the solution space that does not violate resolution rules

Resolution space

the set of all resolutions

FM with Rule Based Resolution

Resolution

- Message Independent Rules
 - Duplicate subtrees sharing the same parent
 - ① Largest number of features
 - Highest priority
 - Choose one
- Message Dependent Rules
 - Olasses of messages (announcements, tones, ...)
 - Regular expressions describing undesired behaviours

Example Resolution Rules

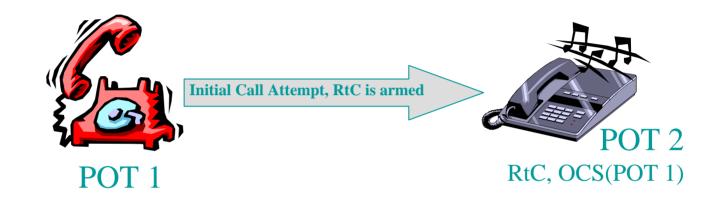
Some rules in Desk

- connecting a user to two different resources
- nouting to two different locations
- Touting a call away and changing user's state
- Touting a call away and connecting to resource
- changing a user's state and connecting to a resource

User-Centric Approach

- Filtering approach
- Qualification of Sequential Action Interactions
- High-level view on connections
- Detects that certain features change behaviour as perceived by the user
- Simple algorithm
- Good run-time performance

Describing Features


TP: B;
$$(A, B) \rightarrow (A, C)$$

- Triggering party
- Connection type
 - Source, destination
 - Original connection
 - Connection after feature activation
 - Parties & Treatment

Interaction Analysis

- Analysis pairs of features
- Compare two feature descriptions according to four rules
- Single User Dual Feature Control
- Connection Looping
- Redirection and Treatment
- Diversion and Reversing

An Example

The Approach in Action

- Explore behaviour with on-line technique
- Cocoons
- If SAI detected→ get connection equation
- Apply 4 rules

(I) Pot 2 Off Hook 2: Origination Attempt - RC (III) 2 Forward Call From 2 to 1 Basic Call 2 Routing, 2 Ringing Out - RC (V) 2 Send to Resource Pot 2 <- Resource 6 - RC Cocoon (I) Pot 2 Off Hook (II) 2: Origination Attempt Forward Call From 2 to 1 - RC (IV) 2 Routing Return Call (V) 2 Send to Resource (VI) Get Equation Cocoon Set Equation - RC Feature Manager (I) Pot 2 Off Hook (II) 2: Origination Attempt Originating (III) Forward Call From 2 to 1 Call Screening (IV) 2 Routing 2 Send to Resource - RC (VI) Get Equation Cocoon Set Equation - RC

RtC: $TP: 2; (1, 2) \rightarrow (2, 1)$

OCS: $TP: 2; (2, 1) \rightarrow (2, Treatment)$

Single User Dual Feature Control

CFB: TP: B;
$$(A, B) \rightarrow (A, C)$$

AR: TP: A;
$$(B, A) \rightarrow (A, B)$$
HL: TP: A; $(A, B) \rightarrow (A, B)$

$$HL: \frac{TP: A;}{(A, B)} \rightarrow \frac{(A, B)}{(A, B)}$$

Connection Looping

CFB: TP: B; $(A, B) \rightarrow (A, C)$

CFU: TP: C; $(A, C) \rightarrow (A, B)$

Redirection and Treatment

CFB: TP: C; $(A, C) \rightarrow (A, B)$

OCS: TP: A; $(A, B) \rightarrow (A, Treat)$

AR: TP: B; $(A, B) \rightarrow (B, A)$

OCS: TP: B; $(B, A) \rightarrow (B, Treat)$

Diversion and Reversing

```
CFB: TP: C; (A, C) \rightarrow (A, B)
```

AR: TP: B; $(A, B) \rightarrow (B, A)$

CFB: TP: A;
$$(B, A) \rightarrow (B, C)$$

AR: TP: B; $(A, B) \rightarrow (B, A)$

Results

	CFU	CW	CFB	OCS	TCS	VMS	RtC	ACB	DND	HL
CFU		М	M, U	U	M, U	M, U	M, U, U	М	M, U	
CW			М		M	M	М	М	М	
CFB				U	M, U	M, U	M, U, U	М	M, U	
OCS							U			U
TCS							M, U	М	М	U
VMS							M, U	М	М	C
RtC								М	M, U	М
ACB									М	
DND										U
HL										

- 10 features
- 49 interaction scenarios
- M → Message-Centric approach (STI, 28 cases)
 - Found "best" solution for all cases
- U → User-Centric approach (SAI, 21 cases)
 - Sometimes subjective decision

Conclusions

Presented approaches

- jimprove detection mechanism
 - qualification of interactions
- add automated resolution
- are complementary
 - each handles different class of interactions

Future work

- g qualification of interactions into desired and undesired as perceived by user
- application in other areas:
 - home networking, component based systems, IP telephony

Any Questions?