THE IMPORTANCE OF THE SERVICE CONCEPT
IN THE DESIGN OF DATA COMMUNICATIONS PROTOCOLS *

Chris A. Vissers (1) and Luigi Logrippo (2)

(1)Department of Informatics (2) Protocol Research Group
Twente University of Technology Department of Computer Science
7500 AE Enschede, University of Ottawa

Netherlands Ottawa. Ont. Canada KIN 9B4

Abstract This paper analyses the level of recognition thatservice concept has acquired in the
world of protocol designers. Opposition againstdbacept and some significant cases of misuse
are expounded and refuted. The paper argues focegased role of the service concept, and its
underlying architectural concepts, as the propseddor designing protocol systems as well as
suitable specification, verification, and testieghniques.

1 Introduction

Although the emphasis of the Workshop on ProtoqmcHication, Testing, and Verification naturally
lies on the role of (formal) description techniquasd related verification and testing methods, the
subject of this paper is architecture. The reasothis is the concern of the authors about thsigent
lack of clarity about some vital architectural cepts underlying protocol systems. Whereas these
architectural concepts ultimately determine the a#ins of the subject of specification, testing or
verification, lack of clarity about these conceptsmately will lead to divergent interpretationbaat
what a specification (technique) is about to ex@resd thus may lead to incompatibilities in protoc
systems.

An important architectural concept is the serviamaept, and its derived topics such as service
primitives, primitive parameters, etc. In spitetbé fact that it has been well known for a number o

years, the concept of service is still facing opms and misunderstanding in the community of data
communications protocols specialists.

It is not unusual to see or hear statements thaw s(inorance or misunderstanding of the concemt, an
still today data communications systems are beiegigthed without having a clear insight in its
architectural semantics and role. This observatemmot be better evidenced than by the fact thst ju
recently (Feb. 1965) the second ISO Draft Propdeal an international standard on "Service
Conventions" [OSC] was rejected because the defsgedice concepts were considered incomplete,
inconsistent, contradictory and/or controversidiisTrejection took place even in the light of tlaetf
that several ISO service standards are referririg tor this reason the service conventions dogume
will appear as a Type 2 Technical Report until neark on the issue will bring more insight and
consensus.

! This paper appeared, in slightly different formM. Diaz (Ed.) Protocol Specification, Testingdaverification, V. (Proc.
of the IFIP WG 6.1 Fifth International Workshop Brotocol Specification, Testing and Verificatiods&vier-North-
Holland, 1986, 3-17.

The authors believe that the concept of servicebeasn a major advance in the theory and practice of
data communications systems, and that its ignoranoeisuse is very likely to lead to poorly desidne
protocols. On the other hand, they have noted tiate there are already several excellent earpepa
that explain the concept [BOC] [SCH] [BUS] [BOS]US], there is a lack of recent papers dedicated to
explaining its importance, to describe its usepristocol design, and to review the current thinkamy
the subject. This paper sets for itself the goafilbhg this gap. Hopefully, it will convert or iimrm
some of the people who oppose or ignore the conaagtit will provide some points for reflectionezv

to people who fully understand and use it. At letss paper can help to perform the role of
systematically ordering the different perspectivashe service concept along which discussion @n b
organized and consensus can be reached. Undoulitedllycause some controversies, a result that th
authors expect and encourage.

In Section 2, we provide an explanation of the emiaf service. We define it, and discuss some
implications of our definition. In Section 3, weadyre the opposition to the service concept. We lis
points of view we have read about, others we haad) and others yet we feel we have good reasons
to suspect. In Section 4, we review what we comssdene common misunderstandings of the concept
of service, especially by presenting examples oatwh our opinion is misguided utilization of the
concept. In Section 5, we provide some generabream favor of the concept of service. We show tha
it is useful from several, mostly closely relatpdints of view. On the basis of these general gylas,

in Section 6 we refute one by one the reasons fposition to the concept that were mentioning in
Section 3. Finally, in Section 7 we draw our cosabas, and we list our main theses in point form.

2 The Service Concept

The most commonly used model for protocol spedificashows a number of protocol entities, the
"service users", communicating with each other &i@other entity, the "service provider". This
communication between protocol entities followscstules, called the "protocol”.

N+ Service Service | _____. Service
Layer User 1 User 2 User x
—<SAP 1 <SAP 2>t ------ <SAP x3
N

Service Service Provider

Figure 1. Mode of Service

In order to communicate via the service providgr@ocol entity utilizes so called "service privés".

A service primitive can be considered as an eleamgniteraction between a service user and the
service provider during which certain values fog tharious parameters of the primitive are estabtish
to which both user and provider can refer. Theradons are executed at the "common boundary" of a
service user and the service provider, called avi€eAccess Point" (SAP).

Since these SAPs represent internal boundariesalrworld systems, service primitives must be aefin
and expressed at a high(est) level of abstractionrder not to constrain valid implementationsisTh

implies that the implementer may use any mechattisthhe finds useful to realize the execution ef th
service primitives such as procedure calls or hardvnterfaces.

A Service Provider, therefore, is seen as an alistreachine accessible from a number of Service
Access Points (SAPs). Execution of a service pieiait one SAP usually invokes the execution of
another service primitive at another SAP whosematar values may depend on the parameter values
of the invoking primitive. The abstract machinalso capable of spontaneous "internal actions'ihegad

to the execution of service primitives at SAPs. rEf@e the specification of a service can be exgaes

in terms of the possible orderings of service piivas and their parameter value dependencies. Since
this way of specification does not reveal any inéistructure of the service provider it is ofteferred

to as an observational, or extensional, speciticatit defines the behavior of the provider asaih de
observed by the users.

It should be noted here that a formal discussiam®fconcept of service requires the introductiba o
formal model, and therefore is beyond the scopisfpaper. The reader is referred to [BLP] [BQ#] f
a more formal discussion.

The protocol entities in Figure 1 can be conside®d layer of functions on top of the service e

In multi-layered protocol architectures. such ad,@Sservice provider can itself be made up of (N)-
protocol entities which communicate by using anott@ver-layer" (N-1)-service provider. Execution
of the (N)-protocol by these (N)-protocol entitiag using the (N-1)-service realizes the (N)-servioce
other words, an (N)-service can always be descrésethe result of the combined action of the (N-1)-
service and the (N)-protocol. Probably this waydekcribing the N-service should be called the N-
protocol specification as it provides a much betterhitectural basis for a protocol specificatiord a
verification than the rather vague concepts culyemmt use. In contrast to the above mentioned
extensional approach this way of service specificais called an intentional or generative techeiqs

it reveals internal structure of the service previd

This above decomposition can be repeated for thB-¢Nrvice. etc., and thus yields a layered prottoc
system with a set of nested services. (Note thatQ%! model, apparently, does not recognize the
medium as a service.) Therefore, we also find thewing definition: "the (N)-service specification
defines the global behavior of the (entities witthie) layers below the (N+l)-layer as observablehay
(entities within the) (N+l)-layer" [GUI]. Similarefinitions are encountered in [BOC] [SCH], etc.

The above implies that there are in principle twaysvof specifying the service:

* the extensional approach which we will call the-@¢jvice specification, and

» the intentional approach, which we will call the){protocol specification.
Happily, but also necessarily, the (N)-service ctian be described in much simpler ways than the (N
protocol, as we will show by two examples.

As a first example, consider two (N+l)-entities ttlexchange streams of messages. The (N)-service
provider they need for this exchange may be onectirabe described in very simple terms, for exampl
as a simple channel that does not lose or "inver@ssages. The (N)-protocol needed to realize this
simple service may, however, be quite complex,oif éxample the (N-l)-service provider can lose
messages, or create spurious ones.

As a second example, suppose that the two (N+idieshneed a (N)-service provider that, in addition

does not reorder messages, and has some buffesityagegain, this service provider can be simply
described as a FIFO queue. Suppose, however hisadrvice is to be realized by using (N-1)-sexvic

providers that can reorder messages. An obviougiKdipcol to realize the desired (N)-service is one
that checks the order of messages by numbering thesome appropriate way. Buffering and/or
retransmission mechanisms can then be used toeefrom out of order messages.

In both examples, we see that a simple servicerigistr "masks"” a variety of rather more complex
protocol descriptions. One of the main theses isfplaper is that a characteristic of well-desigdath
communication systems is exactly that the desorptif a service can be made much simpler than the
combined description of the underlying protocold aarvices.

It would probably be quite difficult to trace baakistory of the service concept. The idea as veavkin
today seems to be the result of committee discusdimat also led to the formulation of the OSI Basi
Reference Model [BRM]. Certainly the idea has grpamd is still growing, in maturity. The first ISO
paper that introduces a more precise definitiothefconcept seems to be [GUI], dated June 198@. Thi
paper also uses a picture showing a box surrourdimegr layers as we do in figure 1, whereas [BRM]
still does not contain this picture and talks abawutervice as a capability of a layer, and therkye
beneath it etc.

Bochmann introduces the concept in his 1979 bodll [B 96], which however was written in 1977/8.
Vissers defines the concept, but uses the termextimg architecture, in a 1976 paper [VI1], andvehio

a complex example in his 1977 thesis [VI2]. Sunshdiscusses the concept in his 1979 paper [SUN],
however he refers to pre-existing ISO work. Thepiragion was provided by the methodology of
software layering developed within Software Engimeg[DIJ] [PAI] [PA2]. Clearly, this idea fell oa
particularly fertile ground and a particularly cemgal application area, although one should also be
careful not to confuse layers of successive alstresc from layers of communicating functions. The
latter is the case in protocol systems.

In recent years, there has been considerable tedgszation between research in software engimegger
and research in data communications system deanghsome of the results obtained have increased the
feasibility and desirability of the approach propadsn this paper. These recent developments include

1. The design of specification languages able to esgplmth service and protocol specifications
precisely [LOT] [BLP] [BO2].

2. Proof techniques that make it possible to formshgw that the joint operation of a (N)-protocol
and a (N-I)-service does indeed realize a (N)-setvi

3. "Layered" testing techniques using "prototypes" Ikmhich an executable (N)-service
specification (a "prototype" of the service) canused to support an (N+l)-protocol (in lieu of
the actual implementation of the first N-protocayérs) [LOG] [LSU]. This specification will
not, of course, be able to simulate the missingr&yn all respects, but at least will allow some
testing to start, fulfilling the function of a "flagrototype"” [LSU] of the service provider.

3 Analysis of the Opposition to the Service Concept

From its very beginning, the service concept hasnbeontroversial. Its supporters won for it an
important place in the Open System Interconnedt@®l) architecture [BRM] [ZIM], but this was not
without opposition. During the ISO/TC97/SC16 plgnaneeting in Berlin in 1980, even a strong
attempt was made by some members to assert theghailew that service definitions should be simple
annexes to protocol definitions, instead of seafiding standards. The attempt failed, however
opposition continued, and still exists today. 1S &CCITT maintain that there are only "Service
Definitions" as opposed to "Protocol Specificatibrfarthermore, individual service specificatiosség

for example [TSD]) contain the proviso:

"this International Standard does not specify irdirl implementations or products, nor
does it constrain the implementation of entitied emterfaces within a computer system.
There is, therefore, no conformance to this stadidar

The OSI Session Service [SSD] was not properlyngefiuntil for this reason (among others) some
member bodies cast a negative vote on the layea® Dternational Standards.

Even worse, much of the protocol world continuetutection as if the concept of service was of ieser
only within the OSI framework. Existing protocolchitectures, such as HDLC, X.25, ARPA-Net, and
SNA, are not being updated (or are only slowly gaipdated) to include the concept of a service, and
this causes problems when they are to be relatacttotectures that instead use the concept. Ewere s
new designs, such as ISDN [ISDN], do not specifyises. Scientific papers are being written igngrin
the concept, and it is not rare to hear that tieer® clear distinction between protocols and seisji or
that the usefulness of a service specificationngply that it gives an unengaged overview of what a
user can expect of a protocol [RRE].

What are the reasons for this opposition? By amdelathey can be classified into the five main
categories listed below. Points 3.1 and 3.2 cacdtled designer's concerns, while points 3.3 tocarb
be called implementer’s concerns.

3.1 Services may at times be difficult to define without reference to the underlying
protocol(s). Typical example is the one mentioned above ofQB¢ Session Service, for which
some people said that it could only be understaddrims of the session protocol.

3.2 One can define a service for which it is hard or impossible to design a supporting
protocol. To avoid this potential problem, in the OSI staddaation process, service
descriptions are expected to progress simultangaiti protocol specifications.

3.3 Some people find it difficult to conceptually separate the service abstract machines, in
terms of which services are often described [SCH], from the seemingly less abstract
protocol machines, and to keep in mind that only the latter havééamplemented directly. In
technical discussion, it is not uncommon to findttbbjections addressed to a service definition
are in fact motivated by the way the implementatsoaenvisaged.

3.4 Implementers, who are justifiably concerned with efficiency problems, often seek
optimization opportunities that may be found by crossing or collapsing service boundaries.

For example, two related functions found in two fetént layers could sometimes be
implemented together. Clearly, the service boundarybe seen as an unnatural obstacle to this
practice.

3.5 Implementers are afraid that users may submit procurement requirements where a
device is required to conform to a service specification. This would add a further level of
concern for them, who are used to think in termgrotocol implementations only.

3.6 Conformance with a protocol implies conformance with the related service, while of
course the converseisnot true.

4 Misuses and misinterpretations of the Service Concept

Some of the opposition to the service concept sdenwgiginate in fact from confusions caused by
misuses or misinterpretations of the concept thatadten found in different contexts. Therefore, we
dedicate this section to a discussion of some quéatily revealing cases of misuse. The discusson i
necessarily short and indicative and far from eshae.

4.1 Nature of the service primitive

One particular misunderstanding, leading to misugdable service concept lies in the interpretaidn
the nature of the service primitive. Almost evergnd a service primitive is understood as a "kind of
message" that is passed across a service bourndaggrly ECMA Transport Protocol documents this
wording can be found literally. It leads to statemsein standards documents like "the directionhef t
service primitive" [OSC], or "a service primitive passed across a layer boundary" [P802], or "the
entity initiating the XXXxxx-service primitive" [OS] [TSD].

The above interpretation seems harmless if atimkd service primitives would indeed define the
passing of information in one direction only. Th8ICsession service [SSD], however, shows already an
example of the contrary by defining bi-directioredchange of information in some of the session
service primitives. The correct interpretationtod &rchitectural concept on which the concept nfice
primitive is built is here clearly at stake.

We would like to stress that the service primitigebuilt on the architectural concept of interaatio
which is enforced by the abstraction level requii@dooundaries between communicating processes (or
entities) inside systems. This concept of intecarcillows a much richer variety of parameter value
establishment than just "simply" value passing.

As examples of this richer variety we mention vahegotiation and value checking [VI3] [LOT]. Both
mechanisms are extremely useful and necessaryniglihng problems, that are largely encountered in
connection oriented service and protocol standdoddyuilding up and distinguishing among different
connections by means of connection endpoint idergif Ignorance of these possibilities gives rse t
such highly unsatisfactory statements in standaclihents as: "all service primitives must (!) make
use of this connection endpoint identification metbm, however this mechanism is not shown as a
parameter of the primitives." [TSD].

But even if the execution of the service primitiveuld imply passing of information in one direction
only, the interpretation of the concept is not glgsvas harmless as one might expect. Poor intetjmeta
leads to poor architectural design: in the rec&fB P802 Local Area Network (LAN) protocol
standards [P802], for example, a situation is emes where the service provider accepts a
DATAGRAMrequest from a user and then responds ito \nith a DATAGRAMconfirmation.

user provider user

DATAGRAMrequest

\: "= | DATAGRAMindication,

Figure 2: P802 definition of confirmed datagram

The meaning of the confirm primitive is not the fionation of receipt, i.e., the confirmation thaiet
DATAGRAMindication has occurred, but that the loeald (!) of the provider to the best of its absi#i
(") has carried out the DATAGRAMrequest.

Apparently the introduction of this confirm primié is inspired by the idea that service primitinesy
be unreliable (we draw this conclusion also from thany discussions around this issue): information
may be passed across the service border but tee sitte may ignore it, so it may get lost.

This is a misinterpretation of the interaction ogpic at specification level one cannot accept the
possibility of unreliable primitives: interactioequires participation of all involved parties antlen
information is passed but not accepted, apparemiyof the partners was not involved and the servic
primitive simply has not taken place. It is an ierpkentation concern, not a specification concerset®

to it that service primitives are executed reliatelgd to take proper measures when errors are likel
occur. It is also the implementer, not the spegifigho is in the proper position to anticipate thes
potential errors (and cure them).

From the user’s point of view, clearly the confitioa carries no new information for the user. Igth
confirmation is positive, there is no evidencetfor user what to do with it since it is independsthe
DATAIndication to the other user, which may or nrayt occur. Also, what should the user do when the
confirmation is negative? To answer this questia emter the field of system management. In our
opinion, this useless primitive constitutes a mesosthe concept of service.

We conclude therefore that the above defined amnfirimitive is useless to the user and a mixture of
specification and implementation concerns.

4.2 The nature of the abstract interface

Another misunderstanding leading to potential nesssems to lie in the nature of the abstract iaterf

If we take figure 1 as example and assume thatigaisks the network service provider, then the local
ordering of network service primitives and theirgraeter value dependencies is usually called the
"abstract interface".

When the user is geographically separated fronméteork, he has to be connected to the networlavia
real (i.e. in contrast to abstract) interface idahg a physical medium. Suppose this real interface
built up of three layers of interface protocol sa®wn below:

N+

Network

Service
Layers
__T—y“ User 1
Real
Inlterface
implementing)
the «4--- Interface medium
l r~—— """ |
Abstract I 1
Interface 7 |
2
______ | 3
s/
Network
Service Network Service Provider

Figure 3: Network Service User connected to the Network Service Provider by a real interface whichis
built up of three layers of interface protocol and uses a physical medium.

The above picture shows that the network providevides the end-to-end network service, and the rea
interface has only local significance. For the rekvuser it is important to know how the network

service primitives are to be mapped on the rearfate primitives, i.e. how he participates in the
implementation of the abstract interface, but hesdwot participate in providing the network service

The picture can also be depicted in the followingywapparently inspiring a metamorphosis in the
interpretation of the service concept:

N+ Net\/\{ork

Layers Service

______ User 1
I_ 3 \8/
f---2---
lL___%___
1

Figure 4: Configuration of figure 3 drawn in a different way.

In an earlier version of [P802] dealing with the I0Sepresentation of Local Network the above
interpretation can be found, but applied to the drtay Interface rather than the Network Interface
shown in figures 3 and 4. It appears (and certdimdypicture tempts to make this interpretatiorat th
layers of interface protocol (in figure 4 indicatied 3, 2, and 1) are erroneously interpreted asrtagf

OSiI protocol, thus protocol layers necessary fterimorking in an OSI environment. Clearly this @ n
the case as a real interface to the physical kygty can be chosen arbitrarily.

Although this picture does not appear in the doameéefining the LAN access methods, the above

confusion still seems to proliferate in member bodgnments on the LAN standardization effort within
SC6.

A more curious development, seemingly related &ahove, has occurred around X.25. Originally this
standard was called the X.25 "Interface", defining interconnection of a User (DTE side) to a Rubli

Network (DCE side). Thus one would expect that Xd2fines a real interface at network service level,
whereas the PIT would be responsible for providhmgnetwork service. Also the structure of X.25, in

particular the channel numbering mechanism, sugg#ss conclusion (although the architectural
structure of X.25 has never been clear).

Recently, however, the term interface is disasseditom X.25, and one talks now about X.25 1984. A

document has appeared defining how X.25 providesQ&I Connection Oriented Network Service
[X25] which contains the following picture:

END SYSTEM A END SYSTEM B

NETWORK SERVICE
PRIMITIVES \Q ENTITY

NL ENTITY ‘&» %;‘NL ENTITY

NS
USERS

X.25 X.25
PACKET PACKET
LEVEL LEVEL
PROTOCOL PROTQCOI
~
DTE/DXE
INTERFACE*

* thisinterface consists of 0 or more network layer entities providing a network layer relay function

Figure 5: Operation of the OS Connection Oriented Network Service and the X.25 packet level protocol
(1984).

The picture confirms, as figure 4 suggests, thatapglying X.25 1984 the user is responsible for
implementing a part of the network service providehnis interpretation is further enforced by the
emerging standard DP 8648 about the internal osgéion of the network layer [ION], in particular by
examples showing the use of connection mode sulonletweveryone reads here: e.g. 1984 X.25 "real
subnetworks") to provide the connection-mode néetvgervice.

The CCITT I. series Recommendations on the Integr&ervices Digital Network shows a similar
approach as described above for 1984 X.25 (whicletisurprising) [ISDN].

One could argue that in practice there is no difiee in implementation effort whether one impleraent
three levels of real interface protocol, or threeels of OSI protocol, so why stir up things. Wewhdo
like to conclude by four points:

» first, it is necessary to achieve architecturaftigfaand consensus about the service concept, so
people understand themselves and each other,

* second, by involving the end user in the provisibthe network service, one should realize that
the user potentially has to implement several (ntbam 3!) levels of subnetwork independent
convergence protocols and subnetwork dependentecgence protocols, dependent on how
many subnetworks are interconnected in tandem.uSke equipment would be much simpler if
the user was connected to a network service ealanterface,

» third, if the user is connected to a network sexw@ a real interface, this interface needs not
necessarily to be standardized,

» fourth, talking about real interfaces definitelynist appreciated within the OSI environment.

5 General Defense of the Service Concept
In this section, we discuss the main reasons iarfafithe service concept.

5.1 Design and Abstraction

The concept of service is indispensable for thagdesf complex protocol systems. Nowadays it is
agreed that layering is one of the main tools fanaging software complexity [DIJ] [PAR1] [PAR2],
and as such it should obviously be applied to @atmmunications systems. For this reason, layer
boundaries should as much as possible be chosamén to enable maximum use of the principles of
abstraction and separation of concerns, in suclyaas to make it possible to express in simplegerm
the functions accomplished by an underlying comglgstem [SCH] [BUS] [BOC] [ZIM]. Used in this
way, the layer boundary becomes a tool for premgntiomplexity from building up as more and more
functions are added to a system. If on the contagyf)-service can only be presented and understood
terms of the (N)-protocol, it will become very hairfinot impossible, to design the (N+l)-protocal o
top of it.

5.2 Growth

The service boundary should be seen as a stabledaguto support later protocol development. The
OSI reference model shows a neat building of sélems. This ideal picture, however, is unlikely to
last as the variety of the applications pushes tdsvadding a variety of branches and roots to #séch
model. For example, the Data Link Service couldbiered by a Local Area Network, or the Network
Service by the ISDN protocol. This could not polsiliork without precise definitions of the services
involved. This issue is addressed clearly, evaomewhat dubitatively, in [POS].

From this point of view, it is easily seen that 8tability of service specifications may be evenreno
important than the stability of protocol specifioats. If a protocol is changed within a given lgytbe
effects are limited to the layer, while a changeaiservice specification may have consequences that
will propagate upwards and affect several protacols

10

5.3 User's Concerns

The service is the user's real concern. Most usernly interested in the end-to-end service ithat
provided to them, while the actual mechanism (ttegqeol) is often immaterial. As a consequence, the
service should be expressed simply in terms ofuber's needs. Even if many users will only be
interested in the Application Service, others wsftecialized needs may be interested in purchasing
lower layer services (say, the Transport Servige)op of which to build their own systems.

5.4 Correctness Proofs

The service concept is necessary to build correstpeoofs of the system's design, and this roleatan
be fulfilled unless the specifications are pred¢séhe point of formality, and fairly simple. Muetork
has been done in recent years on this subject l[@actton of recent papers can be found in [IFI]).
Techniques are being developed, by which it is etquethat one day it will be possible to thoroughly
and formally prove that a protocol, used on a sepnimplements a higher layer service.

Clearly, it is the standardization bodies themseltreat will eventually have to be responsible for
developing such proofs.

Such a correctness proof will eventually make isgiole to ease considerably the complexity of the
testing task discussed under item 5.5. If it haanbgroved that in principle a (N)-protocol on tdpao
(N-I)-service implements a (N)-service, and it motwn that the (N-lI)-service is correctly implemeahte
then it is sufficient to test only the (N)-protodolknow that the (N)-service is correctly implertesh

Once a proof technique is available, one could ten similar principles to prove the conformance of
implementations to specifications, and this wowdglesa considerable deal of trial-and-error in ggtti
specification and implementation correct.

5.5 Testing

In our view, access to service boundaries is iratispble for testing implementations. Unfortunately,
still today it is common to hear the opinion thasting an OSI implementation should be done in the
fashion of an observer that is only able to seetwiag@pens on the physical connection between a
reference implementation and an implementation utett. This is the point of view usually held by
implementers who do not believe in the service epticor are concerned about testers attempting to
probe their proprietary software design. Unfortehgtwhile such a method may be able to detectrerro
by trying some reasonable test sequences, it mayakle to pinpoint the origin of the error, noitis
able to check whether or not the user is providét the expected service. "Layered testing" instead
will be able to determine at least in which laylee error is to be found. The concept of layeretrigs

by using prototypes, presented in Section 2, 3 @kvant in this respect [LSU].

11

5.5 Implementation

The concept of layered implementation is possibé/dne to which protocol software manufacturers are
most keenly adverse. Their point of view is thaytltan only be bound to provide a correct protocol,
and how this result will be achieved is no one'slbesiness. Several of the points we have disdusse
above cast, we believe, a wide shadow on this opinin addition, there are software engineering
reasons for being sceptical. As mentioned abowe,ctincept of layering was invented in software
engineering where it is now well established. Rrotamplementations will have to be layered, just
because of the sheer complexity of the task. Ofsmia clever software engineer could possibly &ind
organization of the functions among the layers Whields to better results (e.g., higher perforngdnc
than the one recommended in the OSI model. But avitube worth the effort? Unusually layered
implementations would have to develop new concéphaalels, different from those already developed
within OSI and it might be difficult to ensure thifie resulting protocols and services are completel
equivalent to the standard. We feel that the btestegy for initial OSI implementation is to follothie
reference model's layering. Once such prototypéereace implementations” are developed, some
optimization may then be attempted.

Whatever layered model is used, it is important {h@cise service and protocol specifications be
developed for it. Such specifications would fulfi#veral different goals:

* make it possible to develop the various layersiffer@nt teams, having some assurance that the
end results will fit together.

» allow the testing of a layer independently of thplementation of the underlying layers (see the
discussion in Section 2).

6 Refutation of the Reasons for Opposition to the Service Concept

The general principles discussed in Section 5 fgplgen established, it is not difficult now to askdr
one by one the reasons for opposition to the seancept that were analyzed in Section 3. Sulosecti
6.1 to 6.6 below correspond to subsections 3.18@Bove.

6.1 Services may at times be difficult to define without reference to the underlying
protocol(s). We hope to have shown that, even if services madifbeult to define at times, the
many advantages offered by the concept of servie&enthis effort worthwhile. Software
specifications are also difficult to formulate, hewer nowadays very few programming shops
make do without them, and the trend seems to bearttsvmore formal specifications.
Furthermore, users should know what they want,saveral of the arguments above (see 5.1 and
5.3) point to the conclusion that a hard-to-defeevice may be simply a poorly conceived one
giving evidence of a poorly conceived protocol!

6.2 One can define a service for which it is hard or impossible to design a supporting
protocol. This is a real argument. Of course, service spatiins should not be defined in such
a way that there exists no realistic protocol t@lement them. Users should know what they
want, but they should not be over-demanding. Ondtier hand, if a service can only be
understood as the result of a complex protocolognaf a lower layer service, then we would
dare to conclude that the layer is poorly desigrmtause its service specifications do not
provide the conceptual advantage of abstractioh gshauld be provided by a well-conceived
layer.

12

~

6.3 Some peoplefind it difficult to conceptually separate the service abstract machine from

the protocol abstract machine. We have watched this difficulty in many protocol
implementers, and we find that the only possiblenaar to this objection is that people need to
be educated. Like all new ideas, the idea of serwiil take time to be absorbed by designers
who have for years worked without it, however wevéhdried to show that this effort is
worthwhile.

6.4 Implementation efficiency may be optimized by crossing or collapsing service
boundaries. This point was, we believe, implicitly or expligitbresent in almost all points of
Section 5, especially 5.5.

6.5 Users may submit procurement requirements where a deviceis required to conform to

a service specification. We understand the implementer’'s concern on thiseiseowever the
discussion in point 5.3 shows, we believe, thataisbould be entitled to request that a certain
service (rather than protocol) be provided. As welbme implementers may offer
implementations of certain layers only, and thateal service ought to be testable. Also see item
5.5.

6.6 Conformance with a protocol implies conformance with the related service, while of
coursethe converseisnot true. While of course this statement is true, the disous#s 5.3 and
5.4 indicates that in some cases conformance withices is what really matters.

Conclusions and Recommendations

We have argued the case for an increased roleatsespecifications in the design and developnoént
communications protocols. To conclude, we woulé li& present our main theses in point form. We are
quite aware of the fact that several of these these highly controversial in the protocol commynit
however we feel that they ought to be presentedtzatcddiscussion on them must continue.

7.1 Service specifications should be recognized an importance equal to the one usually attached
to protocol specifications. The term "service definition” found in OSI docurtegion should be
replaced by "service specification” to correspamtjorotocol specification”.

7.2 Cases of discrepancy between service and protocol specifications should be considered as
specification errors, instead of automatically giving priority to protocol specifications, asis done
now (in fact, the discussion in point 5.2 may indicttat the reverse is what should be usually
done).

7.3 The specification of services should precede or accompany, but definitely not follow, the
specification of protocols.

7.4 A well-designed protocol should have simple and easily understood service specifications
or, at the very least, service specifications will always be much simpler than protocol
gpecifications.

7.5 A protocol system should normally be implemented by respecting service boundaries. If
necessary, optimizations can be introduced after a working system has been obtained.

7.6 The statement of no conformance to service definitions, usually found in OS documentation
(see above) should be replaced by a statement specifying optional conformance.

13

7.7 Sandardization bodies should be required to provide, together with the (N)-Protocol
standard, a proof that (N)-Protocol + (N-1)-Service = (N)-Service. The degree of formality of
such a proof would of course depend on the methwdsable.

7.8 Research should continue on the development of Formal Description Techniques and
verification methods suited to deal with both protocol and service specifications and their formal
verification.

7.9 Research should also continue on design methodologies based on the concept of (N)-
protocol development from (N)-service and (N-1)-service specifications.

7.10 Clarity and consensus about the architectural definition, semantics and role of the service
concept is urgently needed in order to promote its advance and avoid its misuse. A defining
document in the form of an OSI standard would pbbpaée the most appropriate way to reach
this goal.

References

[BLP] Scollo, G., Pappalardo, G., Logrippo, L., ikéma, E., The OSI Transport Service and its
Formal Description in LOTOS. In: Csaba, L., Tarnid. and Szentivanyi, T. (eds) Computer Network
Usage: Recent Experiences, North-Holland, Amstard®86. (Proceedings of the IFIP RC 6 Working
Conference COMNET ’85, Budapest, October 1985) -4&35.

[BO1] Bochmann, G.V., Architecture of Distributed@puter Systems, Springer, Berlin, 1979.
[BO2] Bochmann, G.V., Concepts for Distributed 8ys$ Design, Springer-Verlag, Berlin, 1983.

[BOC] Bochmann, G.V., A General Transition Modet ferotocol and Communication Services, |IEEE
Transactions on Communications, Vol. COM-28, N@Agril 1980), 643-650.

[BOS] Bochmann, G.V. and Sunshine, C.A., FormaliMds in Communication Protocol Design, IEEE
Trans. on Comm., Vol. COM-28, No. 4 (April 1980)46@31.

[BRM] International Organization for Standardizati¢glSO), TC97 Information Processing - Open
Systems Interconnection - Basic Reference Mod&drimational Standard 1SO 7498 (1984).

[BUS] Burkhardt, H.J., and Schindler, S., StruatgrPrinciples of the Communication Architecture of
Open Systems, A Systematic Approach, Computer Néswsol. 5 (1981), 157-166.

[DIJ] Dijkstra, E.W., The structure of THE Multipgpamming System, Comm. ACM 11, No.5 (May
1968), 342-346.

[GUI] International Organization for Standardizati@lSO). TC97 Information Processing - Open
Systems Interconnection - Proposed Guidelines pacication of Services. Protocols and Interfaces
ISO/TC97/SC16/N380 (June 1980).

[IFI] Yemini, Y., Strom, R., and Yemini, S., (EflsProtocol Specification, Testing, and Verificatjo
IV, Proceedings of the IFIP WG6.| Fourth Internatib Workshop on Protocol Specification, Testing,
and Verification, North-Holland (Amsterdam). 1984.

[ION] International Organization for StandardizatiqlSO). TC97 Information Processing - Data
Communications - Internal Organization of the Netwoayer - ISO/DP 8648.2 (Oct. 1984).

[ISDN] CCITT SG XVIII, Integrated Services Digitdletwork, l.series Recommendations, (October
1984).

14

[LOG] Logrippo, L., "Constructive" and "Executabl&pecifications of Protocol Services by Using
Abstract Data Types and Finite-State Transducerd?rotocol Specification, Testing, and Verificatjo
lll. (H. Rudin and C.H. West, eds.), North-Hollakinsterdam 1983.

[LOT] International Organization for StandardizatiglSO), TC97 Information Processing - Open
Systems Interconnection - LOTOS Language for thmgaral Ordering Specification of Observational
Behavior -150 Draft Proposal ISO/DP 8807 (March3)98

[LSU] Logrippo, L., Simon, D., and Ural, H., Exdable Description of the OSI Transport Service in
Prolog in: [IFI] 279-293.

[MYE] Myers, G.J., Software Reliability: Principlesd Practices, Wiley, New York, 1976.

[OSC] International Organization for Standardizat{tSO), TC97 Information Processing - Open
Systems Interconnection - OSI Service Conventiddsaft Proposal ISO/DP 8509 (August 1984)

[PB02] IEEE Project 802, Local and MetropolitareAmMNetwork Standard,

- Draft IEEE Standard 802.1, part A (June 198%ge 29),

- Draft IEEE Standard 802.4 (July 1984) (page)A-3

- Appendix A Functional Requirements Document;si 5.4 (Draft-Oct. 19, 1981), page 4.

[PAI] Parnas, D.L., On the Criteria to be Used iecDmposing Systems into Modules, Comm. ACM
Vol. 15, No. 12 (Dec. 1972) 1053-1058.

[PA2] Parnas, D.L., The Use of Precise Specificetion the Development of Software, in Information
Processing 77 (B. Gilchrist, ed.), 861-867.

[POS] International Organization for Standardizati@SO). TC97 Information Processing - Open
Systems Interconnection - ISO/TC97/SC21/NI08. Aatality of Services in Partial Open Systems (June
1984).

[RAY] Rayner, D., A System for Testing Protocol llamentations, NPL Report DITC 9/82, August
1982. (also in C. Sunshine (ed.), Protocol Spedifim, Testing, and Verification, North-Holland
(Amsterdam), 1982.

[RRE] Unpublished referee report, 1984.

[SCH] Schindler, S., The Distributed Abstract Mawhi A Model for Service Specifications in
Distributed Systems, Computer Communications VON@&.5 (Oct. 1980), 208-220.

[SSD] International Organization for StandardizatidSO), TC97 Information Processing - Open
Systems Interconnection - Session Service DefmitioDraft International Standard ISO/DIS 8326
(1984).

[SUN] Sunshine, C.A., Formal Techniques for ProtoSpecification and Verification, Computer
Magazine, Vol. 12, (Sept. 1979), 20-27.

[TSD] International Organization for StandardizatiglSO), TC97 Information Processing - Open
Systems Interconnection - Transport Service Dadinit International Standard 1ISO 8072 (1984).

[VI1] Vissers, C.A., Interface, A Dispersed Arctutere, Proceedings of the 3rd Annual Symposium on
Computer Architecture, IEEE/ACH, (Jan. 1976), 9%.10

15

[VI2] Vissers, C.A., Interface, Definition, Desigand Description of the Relation of Digital System
Parts, PhD thesis, Twente Univ. of Techn., 1977.

[VI3] Vissers, C.A., Architectural Requirements tbie Temporal Ordering Specification of Distributed
Systems, in T. Kalin (ed.) Proceedings of the EaavpTeleinformatics Conference (EUTECO), Varese
1983, 79-97.

[X25] International Organization for StandardizatiglSO). TC97 Information Processing - Data
Communications - ISO/TC97/SC6/N3148 Use of X.2prvide the OSI Connection Oriented Network
Service (June 1984).

[ZIM] Zimmermann, H., OSI Reference Model, The IS@del of Architecture for Open Systems
Interconnection, IEEE Trans. on Comm., Vol. COM-R8,4 (April 1980) 425-432.

16

