
ENABLING WITH VALUE TRANSMISSION

(See in B&B tutorial discussion  re:   exit   +   functionality).

Upon termination, a process can "exit" a set of values.
These can be passed on to an enabled process.

e.g.
 process P[a] : exit(nat, bool):=

               a ? x:nat ? y:nat;
                      ( i; exit(x, true) [] i; exit(y, false) )

endproc

          . . .

 process Q[ . . . ]    (  a: nat,    b: bool ) :=

          . . .

endproc

           . . .

           P[ . . . ]  >>  accept z: nat, w: boolin Q(z, w)



GENERALIZED CHOICE

EXAMPLE:

choice x: int [] i ; g!x

EQUIVALENT TO: i;g!0 [] i; g!1 [] i; g!2 . . .

choice x: int [] g!x

EQUIVALENT TO: g?x: int

the first may deadlock if it has to synchronize with an identical
choice, while the second will not.

i i i i i

g!0 g!1 g!2 g!3    . . .

WILL OFFER
A NONDETERMINISTICALLY
CHOSEN INTEGER
(COMMITMENT!)

 OFFERS
 ALL INTEGERS



SELECTION PREDICATES

hide sapin
                           sap ?x:nat [x<max]; B1(x)
                            | [sap] |
                            sap ?y:nat [y>min] ; B2(y)

This process can make internal transitions to any of the processes

hide sapin
                            B1(n) | [sap] | B2(n)

                with  ’n’  in the open interval (min, max).

GUARDED EXPRESSIONS               (SEE DIJKSTRA’S
                                                                               "guarded commands" )

                            [x>0]  -> process1
                   []      [x=5]   -> process2
                   []      [x<9]   -> process3

Note:  guards are not edges in the behavior tree

       max > x=y > min



 1
 2       (* MAXIMUM OF 3 NUMBERS  Article by Bolognesi&Brinksma
*)
 3
 4 specification Maximum[ in1, in2, in3, out ]  :noexit
 5
 6 type     integeris
 7 sorts int
 8 opns
 9                    zero        :               -> int
10                   succ        :               -> int
11                   largest     :               -> int
12 eqns forall X, Y:  int
13 ofsort  int
14                   largest   ( zero ,  X )  =  X;
15                   largest   ( X , zero  )  =  X;
16                   largest   ( succ(X) , succ(Y) )  =  succ( largest(X, Y) );
17 endtype
18
19 behavior
20 hide mid in
21                    ( Max2 [in1, in2, mid]
22                 | [mid] |
23                       Max2 [mid, in3, out] )
24
25 where process Max2 [val1, val2, max] :noexit  :=
26                              val1?X:int;   val2?Y:int;   max!largest(X, Y);stop
27                             []
28                              val2?Y:int;   val1?X:int;   max!largest(X, Y);stop
29 endproc
30 endspec
31



Problem:  Define a Black Box that
takes three natural numbers in
any order, and outputs the
largest of them.

Decomposition:  use two black boxes,
each capable of taking two numbers
in any order, and output the largest of them.
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Synchronization  A|[g]|B with values

A B Condition Synchro. Type

g ! E1 g ! E2 val(E1) = val(E2) value match

g ! E1 g ? x : t sort(E1) = t value pass  E1 -> x

g ? x : t1 g ? x : t2 t1 = t2 value generation



Possible combinations:

     !      !          processes must agree on a value

     !     ?          regular output-input case

     ?     ?         neither process knows value
                                 (must be established by interaction mechanism:
                          nondeterminism).

EXAMPLE (deadlock)

      g !0 ;exit || g !1 ;exit

EXAMPLE   ( 4 is offered to environment on gate c )

hide a, bin

     (a ?x: nat ?y: nat;       b !largest(x, y);stop

|[a,b]|

      a !3 !4;                        b ?x: nat;             c !x; stop )

EXAMPLE   ( unknown nat is offered to environment on gate b )

hide a in

    a ?x:nat; b !x;exit
|[a]| = hide a in a ?x:nat; b !x;exit
    a ?y:nat;exit



Full LOTOS:    uses ADT notation to define data
                               structures and operations on them.

            synchronization with value exchange

Several processes get together and come up with a value agree-
able to all of them ( if this is not possible  ->  deadlock ). The value
is then "used" by all processes

"shriek"    a ! 0
          Process proposes value 0 in interaction
                  ( if other processes cannot agree on 0 -> deadlock )

     "query"    a ? x: nat
          Process requests a value for x of sort "nat"
                   ( if other processes cannot agree on sort -> deadlock )

NOTE:
            a ? x: nat    =
                        a! 0  []  a! succ(0)  []  a! succ( succ(0) )  [] . . .



ADTs in LOTOS

The "data" part of LOTOS is a fairly  "standard" ADT  formalism
("Act One")

type    integeris
sorts int
opns                                                  (*signature*)

                  zero           :                    ->  int
                  succ           :             int   ->  int
                  largest        :        int, int  ->  int

eqns forall  X, Y:  int ofsort int (*equations*)
                 largest  ( zero , X  )  = X;
                 largest  (  X , zero )  = X;
                       largest  (  succ(X) , succ(Y)  )  =  succ  ( largest (X, Y) );

endtype

Equations can be conditional:

                Y = 0     =>     largest( Y , X )  =  X



COMPLETENESS

A confluent, terminating system is said to be
canonical, orcomplete.

In such a system, we can decide equality by
reducing terms to normal form.

So it is important to be able to transform an
incomplete system into a complete one.

A partial procedure to do this was invented by
Knuth and Bendix.

It amounts to adding rules to a system so that all
proofs can be done by straightforward rewriting

(the procedure may succeed or loop forever)



In order to guarantee termination, it is necessary:

• to show that the ordering exists

• that the axioms beoriented according to the
ordering.

That’s why we write 0+x =>x rather than the
converse: we are assuming an ordering where
0+x >> x.



FINITE TERMINATION

A rewriting system isfinitely terminating when
the evaluation of every term always terminates in
a normal form.

e.g. obviously a system containing a rule such
as:

x+y ��⇒ y+x
is not finitely terminating.

Finite termination can be proven by showing that
there is a well-founded ordering >> defined on
the set of terms, such that:

if t is any term andσ(t) is the result of applying
any rewriting rule to t, then t >>σ(t).

In fact, one usually proves that for every rewrite
rule A ⇒ B, A>>B. If the ordering satisfies cer-
tain conditions (see handout), this is enough.



Orienting Axioms into Rewriting Rules

0+x => x (R1)
x+0 => x (R2)

(-x)+x => 0 (R3)
(x+y)+z => x+(y+z) (R4)

Desirable properties:

• Completeness (w.r.t. given unoriented rules)
• Finite Termination
• Unique termination, or confluence



Any strategy chosen should be:

• sound, i.e. should not lead to wrong solutions

• as much as possiblecomplete, i.e. not ignore
solutions, if they are reachable with the avail-
able means



Proof Methods

• Unification: finding variable bindings that will unify an
expression with one side of an axiom

   E.g. (-(-a)) is unified with x in i) above. .

• Rewriting: replacing one side of an axiom by the other
side within an expression, possibly after unification.

• Strategy: Finding the sequence of axiom applications
that leads to equal terms on both sides. This is difficult.

In general, this requires search and trial of all possible
rewritings at each step.  A vast amount of nondeterministic
searching is likely to be req’d. This area has been the sub-
ject of research for many years in AI (theorem proving).
In general, extensive computations are necessary and ‘dif-
ficult’ proof are still out of reach.

Some proof heuristics are:

• try to avoid repetition by recording the paths followed
through the search space

• adopt a ‘breadth first’ strategy to try and find ‘simpler
solutions’ before going to ‘more complex’ ones.



An Example

Given the equations:

0+x = x (1)
x+0 = x (2)

(-x)+x = 0 (3)
(x+y)+z = x+(y+z) (4)

Prove that (-(-a)) = a for any a.

We may use the ability to freely interchange equal expressions in
whatever context they may appear, to explore the properties and
implications of the given equations, and prove the desired result.
E.g.:

i) (-(-a)) = (-(-a))+0 by (2) <-
ii) = (-(-a))+((-a)+a) by (3) <-
iii) = ((-(-a))+(-a))+a by (4) <-
iv) = 0+a by (3)   ->
v) = a by (1)   ->

How can we automate this reasoning?



How to compute with equational axioms.

The typical problem when computing with equational
axiom is determining if two terms are equivalent, by
applying the axioms in any order until they are  rewritten
to equal terms.  There are two main ways of doing this:

1. Use general theorem-proving methods.   This is the
most general method. However it is complex to pro-
gram, computationally inefficient, and unsure to termi-
nate.

2. Treat the axioms as orientedrewriting rules and apply
them on the terms ‘as far as possible’.  If the ‘normal
forms’ of the terms turn out to be identical, then we
know that they are equivalent, otherwise ‘we don’t
know’.  This approach is much simpler, however by ori-
enting the equations, certain equalities might be ‘lost’.

The axioms could be written from the beginning in such a
way that methods 1 and 2 lead to the same results.

If not, in certain cases, for given sets of axioms, it is possi-
ble to find a set of rewriting rules such that the two meth-
ods lead to the same results.



Computing with Equational Axioms

(again, this class includes many slides that are not here...
will be distributed in class)


