
CSI 5109

Specification Methods 
for Distributed Systems

Course notes by

Luigi Logrippo
and the LOTOS group

University of Ottawa
School of Information Technology and Engineering

Telecommunications Software Engineering Research Group

please read course description reachable from prof’s homepage:
www.site.uottawa.ca/~luigi



A (Simplistic) View of the Software Development Process
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The earlier a potential problem 
is detected in the software lifecycle,

the smaller its cost is.

By specifying and validating a system 
at the design stage,

many design ambiguities and errors 
can be identified

before implementation starts



Formal Description Techniques (FDTs)
or Formal Specification Languages

Languages for the precise specification of the
functionalities of software.

They must have a math basis (formal).

They can be used in all phases of the process:
requirements, implementation, testing...

In what do they differ from programming
languages?

At the specification level, there is no need for
execution  efficiency, so we can use more
abstract concepts

However:

Is today’s specification language
tomorrow’s programming language?



HISTORY

In 1978, ISO and CCITT (now ITU)  set out to define 
a new family of standards for data communications protocols

The Open System Interconnection

OSI was never fully implemented,
however it generated many useful ideas

Application
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The Seven-Layer “Reference Model”



FDT for OSI

One of the requirements of OSI standardization
was to have one (or more!) techniques for the
formally precise specification of the standards.

(A standard can only be effective if it is precisely
specified, in an implementation-independent
fashion)

Note: in this course, we shall be concerned only 
with  telecom-related FDTs.



FDTs

USE

Directives to 
implementors,
Communication 
between 
implementors.
Standardization

 Verification, 
 formal testing

Design tools

FEATURE

Well-understood, 
unambiguous, precise, 
simple
All the "natural" 
concepts, abstract,
non-procedural

Logically sound -> 
Proofs
Executable, Support 
of test techniques

Modularity, 
abstraction levels



A Great Number of Open Problems:

Expressive Languages

Suitable both for automatic processing and
human use to express requirements at 
various levels of abstraction.

Design and Transformation Techniques

To move between levels of abstraction

Validation Techniques

To prove consistency between levels of 
abstraction

Derivation of Test Cases

To test consistency

Etc. Etc.



Theoretical Developments

Happily, just as these needs were being recog-
nized, some theories were being developed, 
which had potential for meeting them.

• Automata theory and its extensions
• Language theory and its extensions
• Theory of Communicating Sequential Pro-

cesses (Hoare’s CSP)
• Calculus of Communicating Systems (Milner’s 

CCS)
• Temporal Logic 

etc. 



Some standard FDTs

Extended FSM
model

Extended FSM
model - Pascal-base

CCS, CSP, Act One

A notation for 
specifying data 
formats

A notation for 
specifying test
cases

SDL
(Specification and

 Description 
Language)

ESTELLE

LOTOS

ASN.1

TTCN
(Tree and Tabular 
Combined Notat.)

An ITU 
(CCITT) 
standard

An ISO 
standard

An ISO 
standard

An ISO/ITU 
standard

An ISO/ITU 
standard



A Personal View of FDT progression

In the early seventies, the main model for telecom specification 
was the communicating finite-state machine (FSM) model. This 
was the initial SDL model.

This model was not powerful enough to express protocols (little 
data), hence the Extended FSM model: today’s SDL, Estelle.

Process algebras (CCS, CSP) came about in the eighties. They 
had more sophisticated semantics, expressed in LOTOS.

E-LOTOS (Extended LOTOS), defined in the nineties, adds 
extra expressive power but the basic model is the same.

We can expect more sophisticated models from newer theoretical 
developments (e.g. category theory, linear logic). However 
efforts in this direction are still immature.



LANGUAGE

OF 

TEMPORAL

ORDERING

SPECIFICATIONS

Meaning that the language defines the temporal ordering of
events in time (but not their precise time of occurrence).

Consists of two main parts:

Behavior part, to specify ordering of events. Main influenc-
es:

•  CCS: Milner’s Calculus of Communicating Systems
•  CSP: Hoare’s Communicating Sequential Processes

Data part, to specify the data abstractions:

•  ACT ONE Abstract Data Type formalism



Ohm’s Law

V / A = R

or

V = A X R

A = V / R

Engineering is made possible largely
by the existence of such laws,

and by our ability to manipulate them
symbolically, yielding other useful laws.

or

This is algebra



Formal methods
in software seek to use

mathematics in software
in the same way as

mathematics have been
used in engineering: to

provide symbolic models
for the behaviour and

properties of an artifact.



What we need is a mathematics of distributed software by
which programs and specifications can be manipulated
symbolically with the same ease as we can manipulate al-
gebraic expressions.

E.g., in a layered protocol model (OSI-like)

i

P’nPn

j

it would be useful to be able to conclude
formally that Sn  =  (Pn ||| P’n ) | [i,j] | Sn-1

Sn-1

Sn

(let Sn be a service provider of layer S, which is realized 
by two protocols Pn and P’n over a service provider 
of layer Sn-1. These communicate with S by two service
access points i and j)



An example of very simple equivalence
provable in LOTOS:

in out

out in

in [ ]

in mid

mid out

|[mid]|

Two different specifications for a buffer
capable of storing a maximum of two signals.

         P1

         P2

        Sn-1

       Sn

(suppose mid hidden)



A real mathematics of distributed software does not 
yet exist. However, its laws are slowly becoming 
understood (how many centuries after the first 
bridge did the engineering and mathematical laws 
underlying bridge construction become clear?)

The need of efficient computation on a Von Neu-
mann machine leads to sequential thought which is 
not conducive to mathematical thinking. Many small 
functions are involved, the order of execution is 
important, functions have side effects.

The logical clumsiness of low-level software can be 
hidden by increasingly abstract languages, that 
have increasingly nicer mathematical properties. 
plus rules of transformations between such lan-
guages.



LOTOS is a specification language
for distributed systems where many
“nice” mathematical properties (a pro-
cess algebra) hold:

B1||B2 = B2||B1 
B1[]B2 = B2[]B1

B1 || (B2 || B2) = (B1 || B2) || B3

B1 [] (B2 [] B3) = (B1 [] B2) [] B3

B || stop = stop 
B [] stop = B

etc., etc.

It is possible to manipulate LOTOS
formulae according to these algebraic
identities, yielding conclusions about
equivalence of formulae, etc..



This course will concentrate on 
LOTOS.

However it intends to be a gen-
eral introduction on 

algebraic techniques 

for specifying, validating and 
testing distributed systems and 
their protocols



     

 LOTOS PHILOSOPHY

Executability:

• Fast Prototyping
➙  early detection of design errors

• Lifecycle Support

Mathematical Basis:

• Algebraic manipulation of Specifications

• Support of various types of Validation



Some basic LOTOS ideas (will be clearer later):

Formal, mathematical definition:
Syntax (usual BNF)
Static Semantics (attributed grammar)
Dynamic Operational Semantics 

(inference rules)

Data algebra for defining data properties

Process algebra for defining behavior properties

Process encapsulation [object based]
 processes communicating by messages

Process parameterization 

Interleaving parallelism: 
A in parallel with B means that actions 
of A and B are allowed to interleave arbi-
trarily



LOTOS AND
SOFTWARE LIFECYCLE

DESIGN

DESIGN VERIFICATION

IMPLEMENTATION

VERIFICATION AND 
TESTING OF 
IMPLEMENTATION

MAINTENANCE

FEATURES

Expressiveness

Modularity

Precisely defined semantics
Verification rules
Executability of 
Specifications

Executable

Precise testing theory
Test trees can be obtained 
from specifications
Verification rules

Documentation

Modularity
Implementation 
independence

TOOLS

Graphic LOTOS-Graphic 
editors
Syntax, static semantics 
checkers

Computer-assisted 
verification tools for static, 
dynamic verification

Computer-assisted 
translation 
"abstract_LOTOS" -> 
implementation -> 
executable code

Generation of "useful" 
execution trees and test 
sequences.
Computer-assisted 
verification tools

Verification of "persistence" 
of properties



(or “synchronization points”)

coin

gum chocolate

gum Black boxEnvironment

A “Black Box” and its Interaction Points

Execution of an “action” at a “gate” requires participation of 
both environment and box

So the execution of an action is called “synchronization”

The synchronization point is a shared mechanism of box and 
environment

Environment can be other processes or the external world

Some synonyms: interaction, synchronization, rendezvous



A  LOTOS behavior expression:

    coin;
       (gum; stop
       []
        chocolate; stop )

describes a black box that can take a coin and 
then give gum or chocolate.



coin;
(gum; stop
[]
chocolate; stop)

gum; stop
[]
chocolate; stop

stop stop

coin

gum chocolate

A LOTOS behavior tree: states are
  behavior expressions, transitions are actions.
(also called: synchronization tree, 
Labeled Transition System...)



Behavior Trees to Represent Finite Behaviors

(Also called synchronization trees)

What happens if one tries 
to select gum before coin?

What happens if one tries
to put a second coin in?

Any difference in observable behavior?

coin

gum chocolate

coin

chocolate

coin

gum

chocolate

gum

i

coin



Trying to represent infinite behavior 
by behavior trees

coin

coin

coin

chocolate chocolate

chocolate

gum

gum

gum

A labeled transition system

coin

chocolategum
coin

gum

chocolate M M

M = 

or also 



A Labelled Transition System (LTS) is a 
directed, connected graph where each edge 
(denoting a state transition) is labelled by the 
name of an action,
    • external or 
    • internal (= i).

LTSs are used to describe the behavior of pro-
cesses.  
Traversal of an edge labelled by an external 
action means that the environment and the pro-
cess have agreed to execute the action. 

We also say that the environment and the process 
synchronize on the action.However i can be exe-
cuted independently by a process.

LTSs are also called behavior or synchroniza-
tion graphs. When unfolded as trees, they are 
called behavior or synchronization trees.

Note:
Process instantiations, guards, behavior expres-
sions such as stop or exit etc. cannot label edges.



Behavior Expressions in LOTOS

A behavior expression represents at the same time

• the state of a process (i.e. a black box, a system)  
• its labelled transition system

In other words, the state of a process is the set 
of potential behaviors of the process.

There are two predefined behavior expressions:

stop or deadlock
exit or successful termination

There is one predefined action:

i the internal action

More complex behavior expressions can be obtained 
by combining actions and behavior expressions by 
using operators, process definitions, process 
instantiations, etc. as we shall see ...



A LOTOS behavior expression  specifies the "externally observ-
able" behavior of processes which communicate with the environ-
ment by means of “actions” at "gates":

E.g.
       process P [choc]  :=
                          choc;  hide rumble in rumble; P[choc]  (*recursion!*)                      
       endproc                                           

is a process that keeps offering to interact with the environment at
gate choc. It hides action rumble. Recursion is used to represent a
repeating process.

   if the environment collaborates, 
      P will keep offering  choc
   if at some point the environment does not collaborate,  
      P  will stop  (or "deadlock").

Behavior tree for P:                      LTS for P:

               

     

          

choc

i

choc

choc

i



Basic LOTOS Operators 

; Action prefix (Sequencing actions)
and behavior)

[ ] Choice

| | 

| [ ...] | Parallel composition

| | | 

hide Hide some actions

>> Enabling (Sequencing two behaviors)

[ > Disabling (A behavior can interrupt 
another behavior)

P ( ... ) [ ... ] Process Instantiation



Concepts discussed in Class 1:

• Why formal techniques

•  Some history

•  Basic principles of LOTOS:

••  algebraic

••  concept of synchronization (symmetric)

••  environment

••  states and transitions

••  external and internal actions  

••  behavior trees, LTS

••  behavior expressions as states

••  list of basic operators



And whosoever of them ate the honey-sweet fruit of the lotos [...]
wanted to abide there among the lotos-eaters, feeding on the lotos

(Homer, Odyssey)



Reference Materials to get started

Go to:

http://LOTOS.csi.UOttawa.ca/ftp/pub/Lotos/Intro/

Download

Logrippo, L., Faci, M., and Haj-Hussein, M. "An Introduction to LOTOS: Learning by Examples.

Bolognesi, T., and Brinksma, E. Introduction to the ISO Specification Language LOTOS

Turner Tutorial

At the Reserve in the Library, look for 

K.J. Turner (ED.) Using Formal Description Techniques (presents in detail LOTOS, Estelle, SDL 
with many examples)

Another introduction to LOTOS written by Ken Turner

Other materials on reserve (useful for projects and for those who want to know a lot...):

Books by Milner (on CCS) and Hoare (on CSP), and by Ehrig and Mahr (on ACT-ONE)

Two books on European projects related to LOTOS

The ISO LOTOS standard


